
Automata Tutor and what we learned from
building an online teaching tool

Loris D’Antoni†, Matthew Weaver†

Alexander Weinert‡, Rajeev Alur†

†: University of Pennsylvania ‡: RWTH Aachen University

Abstract

Automata Tutor is an online tool that helps students learn basic con-
cepts in theory of computation, such as finite automata and regular expres-
sions. The tool provides personalized feedback when students submit incor-
rect solutions, and also helps teachers managing large classes by automat-
ically grading homework assignments. Automata Tutor has already been
used by more than 2,000 students at 12 different Universities in 4 different
continents.

In this paper, we summarize our experience in building such a system.
We describe the algorithms that are used to produce personalized feedback,
and then evaluate the tool and its features through extensive user studies
involving hundreds of participants.

1 Introduction
Both online and offline, student enrollment in Computer Science courses is
rapidly increasing. For example, enrollment in introductory CS courses has
roughly tripled at UC Berkeley, Stanford and the University of Washington
in the past decade [12]. In addition, Computer Science is the most frequently
taken MOOC subject online [17, 10]. With roughly a thousand students in a
lecture hall, or tens of thousands following a MOOC online, approaches like
manual grading and individual tutoring do not scale, yet students still need
appropriate guidance through specific feedback to progress and to overcome
conceptual difficulties. Many tutoring systems have been proposed to assist
students learning various aspects of computer science such as LISP pro-
gramming [3] and SQL queries [11]; however, these tools are typically not
able to grade the student solution or provide actionable feedback. Recently
there has been work on applying computing power to teaching tasks includ-
ing grading programming problems [15] as well as generating and grading

1



geometric constructions problems [8, 9]. The tool we describe in this paper
falls in this line of work.

Automata Tutor is an online tool (http://www.automatatutor.com)
that helps students learn basic concepts in theory of computation, such as fi-
nite automata and regular expressions. The tool provides personalized feed-
back when students submit incorrect solutions, and also helps teachers man-
aging large classes by automatically grading homework assignments. The
techniques we use to produce these grades and feedback messages are based
on algorithmic techniques that are grounded in program synthesis, logic, and
the theory of formal languages [2, 6]. Real courses at 14 different univer-
sities with more than 3,000 students in 4 different continents have already
used Automata Tutor.

In this paper we summarize our experience in building such a system.
We start by describing the features Automata Tutor offers to help both stu-
dents and instructors (Sec. 2), and provide a brief history of how the tool
became what it is now (Sec. 3). We then describe the experiments, surveys,
and user studies that we ran to assess the overall user satisfaction and the
quality of grades, feedback messages, and user interfaces (Sec. 4). Finally,
we discuss what we learned from the data we collected, and from three years
of experience building the tool (Sec. 5).

Other automata theory education tools There are several strategies
for teaching automata and other formalisms in computer science education.
Our system is the first online tool that is able to grade students’ solutions
and can provide actionable feedback rather than just counterexamples.

The other notable tools for teaching DFA constructions are JFLAP and
Gradiance. JFLAP [13] allows students to author and simulate automata and
is widely used in classrooms. Instructors can test student models against a
set of input strings and expected results. Recently JFLAP has been equipped
with an interface that allows students to test their solution DFA on problems
for which they only have an English description of the language [14]. To
do this the student writes an imperative program that matches the given lan-
guage description. If this program is not equivalent to the student’s DFA
JFLAP automatically produces a counterexample. Gradiance1 is a learning
environment for database, programming and automata concepts. It focuses
on providing tests based on multiple choice questions. These tools either do
not support a way for drawing DFAs, or do not have a high-level representa-
tion of a problem and can therefore not provide grades and feedback about
the conceptual problems with a student’s submission.

Additional tools are available for problems related to DFA constructions.
In ProofChecker [16], students prove the correctness of a DFA by labelling

1http://www.newgradiance.com/

2

http://www.automatatutor.com
http://www.newgradiance.com/


Figure 1: A student’s view at an attempt at solving a DFA construction problem

the language described by each state: given a DFA the student enters “state
conditions” (functions or regular expressions) describing the language of
each individual state. The system then tests these conditions against a fi-
nite set of strings. In DeduceIt [7], students solve assignments on logical
derivations. DeduceIt is able to then grade such assignments and provide
incremental feedback. Visualizations such as animations of algorithms or
depictions of transformations between automata and equivalent regular ex-
pressions exist [4]. These tools do not support course management, grading,
and typically provide only counterexample based feedback. Moreover, the
support for most of these tools has been discontinued and they are not avail-
able to the public anymore.

To the best of our knowledge, Automata Tutor is the first tool for teach-
ing formal languages that includes course management, grading, and feed-
back generation. Moreover, the features of Automata Tutor have been thor-
oughly evaluated using multiple experiments and user studies [2, 6].

2 Automata Tutor in a nutshell
Automata Tutor is an online education tool created to help students learn
basic concepts in theory of computation. In particular, it provides an inter-
face for students to draw the corresponding DFA or NFA to a given descrip-
tion, and receive instantaneous feedback about their submission. The tool
also supports regular expressions and NFA-to-DFA constructions. In this
section we focus on how Automata Tutor is helpful to both teachers and
their students.

3



2.1 A tool for students

Twice ab: Construct a DFA over the alphabet {a, b} that recognizes
all strings in which ab appears exactly twice

Incorrect: Your solution accepts the following set of strings: Grade:{
s | ab appears in s at least twice

}
6 / 10

Problem Description

1st Attempt

Feedback

Figure 2: A student’s first attempt at solving a given problem. The user receives
personalized feedback.

Automata Tutor offers a structured, easy to use interface for students
to practice drawing automata matching a particular description, as shown in
Figure 1. While allowing students to quickly draw any automaton, the tool
also enforces that all automata are legal, helping students better understand
the concepts. For example, when a student adds a new node to a DFA, edges
from the node for each symbol in the alphabet are added automatically and
cannot be deleted.

Upon submitting an automaton, Automata Tutor provides students with
instantaneous feedback to help them understand and fix their mistakes. Con-
sider a student attempting to draw a DFA accepting the language of all
strings in which “ab” appears exactly twice. If the student draws and submits
an automaton that accepts a closely related language, such as the language

Incorrect: You need to change the acceptance condition of one state Grade:
9 / 10

2nd Attempt

Feedback

Figure 3: The student’s second attempt at solving the problem. They are given a
hint at how to change their automaton to the correct one.

4



Correct! Grade:
10 / 10

3rd Attempt

Feedback

Figure 4: The student’s final attempt at solving the problem. This attempt pro-
duces the correct automaton.

of all strings in which “ab” appears at least twice, the tool provides a hint
describing the difference, as is done in Figure 2. After receiving the feed-
back message, the student can submit a new attempt (Figure 3). In this case,
the student’s submissions is structurally very similar to a correct automa-
ton, and the tool suggests how the student might modify the automaton. If
the student submits a correct automaton, as shown in Figure 4, the tool as-
signs full score. Lastly, the tool can also provide a counterexample string on
which the student’s automaton behaves incorrectly. [6] provides a thorough
explanation about feedback for DFA construction problems.

For NFA construction problems, the tool provides counterexample feed-
back on incorrect automata. In addition, it gives students feedback if they
did not take advantage of nondeterminism or if they have not given the min-
imal automaton, an example being “There exists an equivalent NFA with 1
fewer states and 2 fewer transitions.”

2.2 A tool for teachers
Automata Tutor automates grading in a fair way that is comparable to
grades assigned by a human grader, saving teachers time and energy. To
calculate grades for a student’s automaton, the tool estimates the percentage
of strings on which the automaton fails and calculates the minimum num-
ber of syntactic edits the submission needs to accept the correct language.
For DFA submissions, a distance is also calculated between the language of
the student’s automaton and the correct language. [2] describes the grading
algorithm for DFAs in more detail. For NFA submissions accepting the cor-
rect language, the tool also takes into account how much larger the student’s
submission is than the solution.

The tool is also flexible, allowing teachers to specify their own assign-
ments and assign them to their students. Instructors can create a course, and
have their students register for it by distributing its course ID and password.

5



Figure 5: An instructor’s view at one of their courses

They can then create problem sets for the course with their own descriptions
and solutions, and can choose to specify a limit to the number of attempts
each student has for each problem. Ultimately, teachers can download the
grade information for their students’ submissions. The course management
interface is shown in Figure 5.

3 The evolution of Automata Tutor
In its three years of existence, Automata Tutor has gone from a prototype,
which was never used in real classrooms, to a tool that is widely accepted
and used in multiple universities all over the world. We give an overview
over the development history of the tool in this section and show the driving
forces and ideas behind its development.

3.1 The precursor
A basic version of Automata Tutorwas built to test the algorithms presented
in [5]. This paper presented a logic for describing languages that could also
be nonregular, and the algorithms presented in [5] could prove or disprove
regularity for many such languages. In this version of Automata Tutor, an

6



administrator could use such a logic to pose automata constructions prob-
lems. Students could then solve the problems and receive a counterexample
when the solutions they submitted was incorrect.

Limitations of the precursor Since the goal of the tool at this point
was that of evaluating algorithms, the interface was still immature and draw-
ing automata was cumbersome. Moreover, the feedback was limited to coun-
terexamples. Due to these factors, this version of the tool was not deployed
in real classes.

3.2 Automata Tutor 1.0
The precursor of Automata Tutor just provided students with a counterex-
ample if their attempt at solving a problem was incorrect. Our goal in de-
veloping Automata Tutor 1.0 was to also provide students with a grade for
their attempt as well as with feedback about how to improve and correct
their automaton. In order to do so, the tool compared the student’s attempt
with the solution using three different metrics. These metrics are outlined
in [2] and further discussed in Section 4.1. In addition to a numerical grade
the tool provided actionable feedback expressed in plain English. We briefly
described techniques used to produce the feedback in Section 2, and a study
of the effectiveness of feedback messages is presented in [6].

Automata Tutor 1.0 only supported DFA construction problems. In this
type of problem, the students are given a problem statement of the form
“Construct a DFA that accepts all the strings in the language . . . ” The stu-
dents could construct a DFA graphically in their browser and submit their
attempt to the system. The system would then provide a grade and a feed-
back message.

In order to split the load as well as separate the concerns of displaying
problems to the user and the actual computation, we split Automata Tutor
1.0 into two components: a web-facing frontend built in Scala and Lift, and
a backend built using C# and ASP.NET. Another benefit of this architecture
was that it would be possible to support other kinds of problems using the
same frontend. Even though this did not happen in Automata Tutor 1.0, this
architecture would prove very useful when building the successor, Automata
Tutor 2.0. A typical communication between the frontend and the backend
is shown in Fig. 6.

Limitations of Automata Tutor 1.0 Although Automata Tutor 1.0
served its purpose of evaluating the techniques from [2] very well, there
were still some limitations, some of which were technical, while others were
conceptual. The technical problems included the fact that the tool relied on

7



Figure 6: Typical workflow of a student solving a problem

features that were only supported by the Google Chrome browser. Addition-
ally, although the interface for students to attempt the posed problems was
improved from the one present in the previous version of the tool, it was still
inconvenient to use.

Chief among the conceptual shortcomings was the fact that DFA con-
struction problems were the only kind of supported problems. Whereas the
separation of front- and backend already laid the foundation for the exten-
sion to other kinds of problems, it would have been non-trivial to extend the
frontend to handle these new problem types. Also, using the tool required
strong collaboration between instructors and administrators, as there was
no way to create courses, and assign problems only to certain groups of stu-
dents. These limitations were adressed during the development of Automata
Tutor 2.0.

3.3 Automata Tutor 2.0
After we deployed and successfully used Automata Tutor 1.0 in 3 courses
at 3 universities with about 400 students, the tool’s limitations became ap-
parent. We decided to reimplement the frontend with a heavier focus on
scalability in terms of involvement of the administrators, and flexibility in
terms of creating different types of problems.

We addressed the former problem by implementing course management
and assigning users one of two roles: students, instructors. The frontend

8



now has a concept of courses, problems and problem sets. While students
can only enroll in courses and solve the problems posed in these courses,
instructors are allowed to create courses and problems, and collect grades at
the end of a course. A screenshot of the interface for course management
can be seen in Fig. 5.

Automata Tutor 2.0 also allows for easy extensibility to handle new
problem types. A developer simply has to provide views that allow instruc-
tors to create, edit and delete a problem as well as a view that allows a stu-
dent to solve a problem. Furthermore, the developer will have to implement
a web-service offering a grading engine.

We implemented three new problem types in addition to the already ex-
isting DFA construction problems using this abstraction. Version 2.0 of Au-
tomata Tutor thus supports the construction of DFAs, NFAs, and regular
expressions from a description of a regular language in plain English, as
well as the construction of a DFA that is equivalent to a given NFA. Since
all these formalisms describe the set of regular languages, we could reuse
parts of the existing grading and the feedback engines.

These changes were widely accepted and are now in constant use. In-
structors deeply appreciated the possibility to manage their courses them-
selves instead of having to work with the administrators. We rolled the new
frontend out at 14 universities in four continents. It is used by 3,000 students
and has already graded more than 40,000 solutions.

Limitations of Automata Tutor 2.0 Although the tool is being appre-
ciated by the community, there is still room for many improvements. In
particular, in its current version, the tool only supports DFA, NFA, and reg-
ular expressions problems. We discuss some future directions in Sec. 5.

4 Experience report
Throughout the process of developing Automata Tutor, we have conducted
a number of a studies to test the tool’s success at helping students learn to
construct automata. We summarize what learned from them in this section.

4.1 Results about automatic grading
Through a number of user studies involving over 500 students at three uni-
versities2, we used students’ responses on a 5 point Likert scale to measure

• how fair students feel the grades assigned by the tool are;

• how meaningful the grades assigned by the tool are.

2University of Illinois Urbana-Champaign, University of Pennsylvania, Reykjavik University

9



The general consensus is that students find that the partial grades assigned by
the tool are both fair and meaningful. For DFA submissions, we additionally
compared grades assigned by the tool to those given by human graders, and
found they are comparable, although the tool is more consistent at assigning
the same grade to the same solution. [2] contains a more detailed discussion
on automatic grading in Automata Tutor.

4.2 Results about feedback
The user studies all agreed that, when it comes to feedback, simpler is better.
We measured this by splitting students into three groups each receiving a
different type of feedback: binary feedback (yes/no), counterexamples, and
plain English hints. Afterwards, we had the students fill out a survey with a
5 point Likert scale asking about

• how useful is the feedback;

• how helpful is the feedback for understanding mistakes;

• how helpful is the feedback for getting the correct solution;

• how confusing is the feedback.

While too much feedback may be detrimental to students, having no feed-
back is worse; students who were only told if their submission was correct
or not were slower at solving problems and did fewer practice problems than
those receiving feedback. [6] provides a comprehensive report on this user
study.

For feedback pertaining the size of a student’s NFA, there was no im-
provement in performance from sharing how many fewer states and tran-
sitions were in the solution than just showing “A smaller NFA exists.” In-
terestingly, in both cases, about half of students’ subsequent submission no
longer accepted the correct language.

4.3 Results about usability
We compared the user surveys with the old (1.0) and new (2.0) drawing
interfaces and measured

• how easy students thought it was to draw using the interface;

• how predictable the behavior of the interface was.

We used a 5 point Likert scale for each metric, concluding that the new
interface is significantly easier to use, and is significantly better at behaving
as users expected.To both questions, the median student response for the
new interface was a 5: the highest score. This is particularly meaningful, as
a tutorial accompanied the old interface while no instructions are provided
for the new interface.

10



4.4 What we learned from the instructors
We summarize the key (subjective) observations by the three instructors who
have taught theory of computation courses multiple times before and have
used Automata Tutor during our experiments. First, the requirement that
the homework had to be submitted using the tutoring tool ensured students’
participation. Once students started interacting with the software, they were
very much engaged with the course material. Second, the average grade
on the homework assignments offered in the course increased when using
Automata Tutor. Third, the teaching assistants were very happy that the
tool did the grading for them. Lastly, while not profound, we learned that
instructors enjoy the tool and want more of this type of work: “This is how
the construction of finite automata that recognize regular languages should
be taught in a modern way! I wish I had similar tools for all the topics I need
to cover” [1].

5 Discussion and future work
In its three years of life Automata Tutor has seen many updates and was
adopted by more than 3,000 users. In this section we discuss the lessons we
learned from our experiments and show how these lessons can be applied to
further improving the tool. We first present what features were well-received
by instructors and students before we discuss features that were not well-
received and therefore removed from the tool. Finally, we show how we
plan to extend Automata Tutor to support new problems and attract more
users in the future.

5.1 What worked
Based on our surveys and experiments we observed the following:

Interfaces are important: Although this is known for many other domains,
it is particularly important in the context of education. When students
are already struggling to find the right way to approach an homework
problem, a non-intuitive drawing interface can cause harm.

Simple feedback is good enough: Based on the experiments discussed in
Section 4 and in [6], it is clear that almost any type of feedback is ef-
fective and improves the students’ learning experience. The feedback
messages have to be clear and concise: counterexamples, simple edits,
etc.

Instructors like independence: In the earlier versions we allowed instruc-
tors to contact us to set up courses, which was too complicated for
them. Enabling course management in Automata Tutor 2.0 allowed

11



us to gain a large user base. Since the introduction of course manage-
ment, 10 new universities started using the tool in real classes.

Instructors love automated grading: This is not surprising, but it is prob-
ably the feature that is most responsible for the success of the tool.
Automata Tutor has been deployed in classes with more than 200
students for which manually grading an homework would take more
than fifty man-hours. In Luca Aceto’s words: “From my perspective
(and from that of my TAs), automatic grading is a real bonus. I love
to teach, but I really hate to grade a large number of student assign-
ments.” Up to today Automata Tutor has graded more than 50,000
student submission;

End of course surveys: These are really helpful in assessing the features
that cause confusion and those that actually help the students. Quan-
titative questions which ask for overall user satisfaction are helpful in
assessing the value of the tool. Open ended questions which ask for
suggestions and opinions can guide on what features should be added
or removed.

5.2 What did not work
Based on our surveys and experiments we observed that:

Verbose feedback is confusing: During the user study presented in [6] we
found that longer feedback messages were confusing and were actu-
ally causing frustration among the students. We therefore removed
verbose feedback messages and replaced them with counterexamples.

Long solution-oriented feedback: If the solution is far from a correct one
it is better to simply tell the student that the solution is incorrect rather
than providing a hint on how to fix it. In particular we observed that
long edit scripts are confusing.

A single crash can cost many users: Especially in the domain of educa-
tion, where student rarely do homework assignments, it is important
to provide a robust tool on a robust server.

5.3 The final goal
In the next years we want to add more features to Automata Tutor and be
able to fully support students learning basic theory of computation concepts.
Concretely we plan to add:

Regular expressions: Although the tool supports them, the grading features
are currently very basic. Defining new metrics and feedback that are
tailored for regular expressions is part of our agenda.

12



Automata meta-constructions: An example problem would be: Given two
DFAs (Q1, q1

0, δ1, F1) and (Q2, q2
0, δ2, F2) define their intersection. Such

a feature requires a language that is able to symbolically manipulate
the objects in the two automata signatures. Integrating such a language
with a theorem prover, like Coq, might allow us to effectively grade
these complex assignments.

Proofs of non-regularity: These are an important concept on which students
often struggle. Some initial attempts at this problem can be found
in [5], but it is still not clear how to build a user-interaction model that
can produce feedback and grades, in particular for proofs based on the
pumping lemma.

Proof of DFA correctness: Students need to know how to characterize the
languages described by each state of an automaton in order to prove
by induction that the DFA correctly accepts a target language. The
logic presented in [2] could be used to allow the students to enter such
descriptions. A informal attempt to solve this problem is presented
in [16].

Context-free languages: It is not clear how to adapt our current methods for
grading and feedback to non-regular languages. Even though equiva-
lence of these languages is undecidable, there may be algorithms that
work for small solutions.

Turing machines: Adding grading for Turing machines would be the next
sttep after the grading of context-free languages. This poses the same
questions as the previous case.

MOOC deployment: We would like to deploy Automata Tutor in a real
MOOC. This would allow us to leverage a large user base and learn
more about the tool capabilities from the MOOC’s forum.

6 Conclusions
We presented Automata Tutor, an online tool that is already being used by
13 universities around the world to teach basic concepts in theory of compu-
tation. Automata Tutor is available at http://www.automatatutor.com.
It allows instructors to manage courses, and it can currently provide the
students with grades and personalized feedback for DFA, NFA, NFA-to-
DFA, and regular expressions constructions. We discussed how the tool
evolved and pointed out the driving features behind its success: simple and
clear feedback messages, consistent grades, intuitive drawing interface, and
course management for instructors. Our ultimate goal is to extend Automata
Tutor to support most undergraduate-level concepts in theory of compu-
tation such as proofs of non-regularity, automata meta-constructions, and

13

http://www.automatatutor.com


context-free grammars.

Acknowledgements We would like to thank Luca Aceto for his invalu-
able support, feedback, and availability. Not only Luca helped us improving
the tool, but he also advertised it to the community. This research is partially
supported by NSF Expeditions in Computing awards CCF 1138996.

References
[1] Luca Aceto. Ode to the automata tutor, 2015.
[2] Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Ma-

hesh Viswanathan. Automated grading of dfa constructions. In Pro-
ceedings of the Twenty-Third International Joint Conference on Artifi-
cial Intelligence, IJCAI ’13, pages 1976–1982. AAAI Press, 2013.

[3] John R. Anderson and Brian J. Reiser. The LISP tutor: it approaches
the effectiveness of a human tutor. BYTE, 10(4):159–175, April 1985.

[4] Beatrix Braune, Stephan Diehl, Andreas Kerren, and Reinhard Wil-
helm. Animation of the generation and computation of finite automata
for learning software. In Oliver Boldt and Helmut JÃijrgensen, editors,
Automata Implementation, number 2214 in Lecture Notes in Computer
Science, pages 39–47. Springer Berlin Heidelberg, January 2001.

[5] Pavol Cernỳ, Sumit Gulwani, Thomas A Henzinger, Arjun Radhakr-
ishna, and Damien Zufferey. Specification, verification and synthesis
for automata problems. 2012.

[6] Loris D’antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh
Viswanathan, and Björn Hartmann. How can automatic feedback help
students construct automata? ACM Trans. Comput.-Hum. Interact.,
22(2):9:1–9:24, March 2015.

[7] Ethan Fast, Colleen Lee, Alex Aiken, Michael Bernstein, Daphne
Koller, and Eric Smith. Crowd-scale interactive formal reasoning and
analytics. In Proceedings of UIST’13, 2013.

[8] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Syn-
thesizing geometry constructions. SIGPLAN Not., 46(6):50–61, June
2011.

[9] Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv.
Solving geometry problems using a combination of symbolic and nu-
merical reasoning. In Ken McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, volume 8312 of Lecture Notes in Computer Science, pages
457–472. Springer Berlin Heidelberg, 2013.

[10] Katy Jordan. Mooc completion rates: The data. 2014.

14



[11] Antonija Mitrovic. Learning SQL with a computerized tutor. In Pro-
ceedings of SIGCSE’98, pages 307–311, New York, NY, USA, 1998.
ACM.

[12] David Patterson. Why are english majors studying computer science?
2013.

[13] Susan H. Rodger and Thomas Finley. JFLAP - An Interactive Formal
Languages and Automata Package. Jones and Bartlett, 2006.

[14] V.S. Shekhar, A. Agarwalla, A. Agarwal, B. Nitish, and V. Kumar. En-
hancing JFLAP with automata construction problems and automated
feedback. In Contemporary Computing (IC3), 2014 Seventh Interna-
tional Conference on, pages 19–23, Aug 2014.

[15] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Au-
tomated feedback generation for introductory programming assign-
ments. In Proceedings of PLDI’13, pages 15–26, New York, NY, USA,
2013. ACM.

[16] Matthias F. Stallmann, Suzanne P. Balik, Robert D. Rodman, Sina
Bahram, Michael C. Grace, and Susan D. High. Proofchecker: an ac-
cessible environment for automata theory correctness proofs. SIGCSE
Bull., 39(3):48–52, June 2007.

[17] New York Times. Instruction for masses knocks down campus walls.
2012.

15


	Introduction
	Automata Tutor in a nutshell
	A tool for students
	A tool for teachers

	The evolution of Automata Tutor
	The precursor
	Automata Tutor 1.0
	Automata Tutor 2.0

	Experience report
	Results about automatic grading
	Results about feedback
	Results about usability
	What we learned from the instructors

	Discussion and future work
	What worked
	What did not work
	The final goal

	Conclusions

