
Rheinisch-Westfälische Technische Hochschule Aachen
Lehr- und Forschungsgebiet Informatik 2
Programmiersprachen und Verifikation

Analyzing Arithmetic Prolog Programs
by Symbolic Execution

Alexander Dominik Weinert

Masterarbeit
im Studiengang Informatik

Gutacher: Prof. Dr. Jürgen Giesl
Prof. Gerhard Lakemeyer, Ph.D.

Betreuer: Dipl.-Inf. Thomas Ströder

Abstract

Automated analysis of programs has been of interest for a long time now. One particular
property of interest is termination behavior, that is, whether or not some program is
guaranteed to terminate after a finite amount of steps.

In this work we develop an automated termination analysis for a fragment of the
programming language Prolog. This fragment consists of the purely logical fragment
of Prolog and the cut, as well as of arithmetic comparisons and evaluations. Even
though there exist approaches that claim to analyze programs in Prolog, most of them
are constrained to a small subset of the language, so-called definite programs. These
approaches do not take the more complicated features of the Prolog language, such as
the cut, arithmetic comparisons or arithmetic evaluations, into account.

To develop this analysis, we develop an abstract semantics that allows us to reason
over sets of executions of a Prolog program written in this fragment. The objects of
this semantics are abstract program graphs that describe all possible evaluations of a
given query. This abstract graph-based semantics is based on existing work, which we
extend to take arithmetic comparisons and evaluations into account.

We then construct an integer transition system from the abstract program graph, the
termination of which implies termination of the given program. The resulting transition
system can then be analyzed for termination using existing methods.

We have implemented our approach in the termination prover AProVE. Using this
implementation, we have conducted experiments using a broad set of benchmarks and
showed that our approach offers an improvement over existing methods, both in terms
of runtime and in terms of power.

iii

Zusammenfassung

Die automatisierte Analyse von Programmen wird seit langem erforscht. Von beson-
derem Interesse ist dabei die Terminierungsanalyse, also die Frage, ob ein gegebenes
Programm nach endlich vielen Schritten terminiert.

In dieser Arbeit entwickeln wir eine automatisierte Terminierungsanalyse für ein Frag-
ment der Programmiersprache Prolog. Dieses Fragment besteht aus dem rein logischen
Fragment Prologs, dem Cut, sowie arithmetischen Vergleichen und Auswertungen.
Obwohl es Ansätze gibt, die für sich beanspruchen, Prolog zu analysieren, sind die
meisten dieser Ansätze auf ein kleines Fragment von Prolog beschränkt, nämlich auf
sogenannte definite Programme. Diese Ansätze lassen dabei die Auswirkungen kom-
plizierterer Sprachkonstrukte außer Acht, wie zum Beispiel die Auswirkungen des Cuts,
arithmetischer Vergleiche und arithmetischer Auswertungen.

Wir entwickeln eine abstrakte Semantik, die uns erlaubt, Mengen von Ausführungen
zu analysieren. Die Objekte dieser Semantik sind abstrakte Programmgraphen, die alle
möglichen Evaluationen einer Anfrage an das Programm darstellen. Diese abstrakte,
graphbasierte Semantik basiert auf einem existierenden Ansatz, den wir erweitern, um
arithmetische Vergleiche und Auswertungen zu berücksichtigen.

Daraufhin konstruieren wir ein Integer Transitionssystem auf Grundlage des abstrak-
ten Programmgraphen, dessen Terminierung die Terminierung des ursprünglichen Pro-
gramms impliziert. Die Terminierung des Transitionssystems kann dann mit bekannten
Methoden analysiert werden.

Wir haben unseren Ansatz in dem Terminierungsanalysetool AProVE implemen-
tiert. Mithilfe dieser Implementierung haben wir Experimente auf Grundlage einer
großen Menge von Beispielen durchgeführt, die zeigen, dass unser Ansatz bessere Ergeb-
nisse als bestehende Methoden liefert. Diese Verbesserungen zeigen sich sowohl in einer
niedrigeren Laufzeit als auch in einer größeren Mächtigkeit.

v

Acknowledgments

First and foremost, I would like to thank my supervisors, Prof. Jürgen Giesl and Prof.
Gerhard Lakemeyer for allowing me to write this thesis under their supervision. This
goes as well for Thomas Ströder, without whose fast responses to emails, countless short
and long talks as well as tireless proofreading I would not have been able to complete
this thesis.

I also have to thank all the members of the AProVE team, both permanent and
student workers, who always had the right answers when I needed them, both during
long group discussions and to quick questions at a moment’s notice.

The comparison between the approach presented in this thesis and others would not
have been possible without the help of several people around the world and their will-
ingness to dig deep into backups in order to extract copies of decades-old tools. Namely,
these are, in alphabetical order, Samir Genaim, Enno Ohlebusch, Peter Schneider-Kamp,
Danny De Schreye, Alexander Sczyrba, Alexander Serebrenik, René Thiemann, and Jan
Krüger.

I also want to thank my friends who have supported me during not only the months
it took me to write this thesis, but all throughout my studies.

Finally, I would like to thank my parents and my girlfriend, who have supported me
tirelessly all throughout my studies and far earlier than that.

Alexander Weinert

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe sowie Zitate kenntlich
gemacht habe.

Alexander Weinert

vii

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Contributions . 3
1.3. Mathematical Preliminaries . 4

2. Prolog Fragment 5
2.1. Introduction to Logic Programming . 5
2.2. Syntax and Informal Semantics of Prolog Fragment 8
2.3. Differences between Prolog Fragment and ISO-Prolog 13

3. Concrete Semantics 17
3.1. Programs . 17
3.2. States and Evaluation . 19
3.3. Equivalence to ISO Semantics . 29

4. Abstract Semantics 31
4.1. The Abstract Domain . 31

4.1.1. Arithmetic States . 31
4.1.2. Abstract Program States . 33

4.2. Structure of Abstract Evaluation . 36
4.3. Evaluation of Logic Programs . 37
4.4. Evaluation of Arithmetic Logic Programs 42

4.4.1. Safe Evaluation of Arithmetic Expressions 42
4.4.2. Evaluation of Arithmetic Comparison 47
4.4.3. Evaluation of Arithmetic Assignment 54

4.5. Properties of the Abstract Evaluation Relation 60
4.5.1. Determinacy . 61
4.5.2. Soundness . 64

5. Termination Analysis 71
5.1. Termination Graphs . 72

5.1.1. Abstract Semantics . 72
5.1.2. Instantiation and Generalization 76
5.1.3. Splitting and Parallelization . 81
5.1.4. Construction of Termination Graphs 88

5.2. Transformation of Termination Graphs into Integer Transition Systems . . 91
5.2.1. Integer Transition Systems . 92

ix

Contents

5.2.2. Reduction of Termination Graphs to ITSs 96
5.2.3. Soundness of the Reduction . 104
5.2.4. Termination Analysis of ITSs . 105

5.3. Practical Implementation . 106

6. Evaluation 109
6.1. Compared Approaches . 109

6.1.1. Strategies Implemented in AProVE 110
6.1.2. Other Tools for Termination . 110

6.2. Types of Examples . 112
6.3. Discussion of Results . 113

6.3.1. Performance on Logic Examples with Cut 113
6.3.2. Performance on Arithmetic Examples 114

6.4. Combining the Approaches . 117
6.5. Advantages and Limitations . 117

7. Conclusion 119
7.1. Future Work . 120

A. Supplementary Proofs 123

Bibliography 133

x

1. Introduction

The automated analysis of programs has been of interest since the very beginnings of
computer science. This interest goes back to [Tur36], which is widely regarded to be
one of the first works of computer science. In this work, the author does not only
define the Turing machine as a model of computation, but also discusses the possibility
of automated analyses. However, he also shows that even the most basic analysis is
impossible in general. He furthermore shows that the question whether or not a given
program eventually terminates is impossible to answer automatically and correctly for all
programs. This problem is commonly known as the halting problem. The corresponding
analysis is known as termination analysis.

Despite this early proof, many sound, but necessarily incomplete analyses have been
developed. One of the most popular methods for such an analysis is symbolic execution.
This technique relies on the fact that computations are usually comprised of a sequence
of states. The general idea of symbolic execution is to develop a finite representation of
an infinite set of states. If these so-called abstract states can then be evaluated using an
abstract semantics, it is possible to reason about an infinite set of concrete states. Even
though this approach leads to an overapproximation of the behavior of the program, lots
of valuable analyses have been carried out using this method.

In this work we develop an abstract semantics and a termination analysis for programs
written in a fragment of the programming language Prolog. For this we use techniques
from abstract interpretation. This poses an interesting problem, since the behavior of
Prolog programs is not defined as a linear sequence of states, but via a search through
a tree. Each program together with some input defines a search tree, which is then
traversed at runtime.

We begin with an introduction to the fragment of Prolog that we consider in Section
2 (Prolog Fragment). In that section we also describe the standard semantics of this
fragment informally and give a pointer to their complete formal definition in an ISO
standard.

In order to be able to apply standard methods from abstract analysis to Prolog, we
then present a state-based semantics for our fragment, which is shown to be equivalent
to the standard semantics. This work, which was originally introduced in [SESK+12]
and is merely reproduced in this thesis, is shown in Section 3 (Concrete Semantics).

We then go on to develop an abstract semantics based on this concrete semantics
in Section 4 (Abstract Semantics). This abstract semantics extends work previously
published in [GSSK+12] and defines both abstract states and rules for evaluating these
states. We extend the definition of an abstract state shown in [GSSK+12] and define
new rules that allow us to evaluate built-in features of Prolog that were not previously
considered. Furthermore, we show that this abstract semantics is a sound overapproxi-

1

1. Introduction

mation of the concrete semantics described in Section 3.

In Section 5 (Termination Analysis) we develop a termination analysis on the basis of
the abstract semantics given in Section 4. For this we first construct a finite termination
graph from a given program. This construction was previously implicitly described in
[GSSK+12] and part of the abstract semantics presented there. We then construct an
integer transition system from the termination graph. We show that termination of the
integer transition system implies termination of the original program.

We have implemented our termination analysis in the termination prover AProVE.
Using this implementation, we have evaluated our approach to termination analysis
in Section 6 (Evaluation). Our termination analysis significantly outperforms existing
approaches to termination analysis of arithmetic programs both in terms of power and in
terms of runtime. It also is, to the best of our knowledge, the first termination analysis
for Prolog that handles both arithmetic comparisons and evaluations as well as the
cut directly.

The thesis closes with a conclusion and summary of our findings in Section 7 (Con-
clusion). In that section, we also give an outlook on further work that can build on this
thesis.

1.1. Related Work

Termination analysis as well as the analysis of Prolog and symbolic execution in gen-
eral have a long history. Even though termination analysis is impossible as a decision
procedure, there have been both theoretical methods and practical implementations that
tackle this problem. In this section we give a brief overview over these techniques and
provide pointers to literature on related topics.

Our work builds directly on previous work towards the termination analysis of Pro-
log, namely work published in [GSSK+12], which presented an abstract semantics for
Prolog, and [SESK+12], in which the state-based concrete semantics of Prolog were
defined.

[CC77] is often cited as the seminal work on abstract interpretation, which is a frame-
work for program analysis that is strongly connected to symbolic evaluation. It intro-
duces this method and provides examples of analyses that can be formulated in terms
of abstract interpretation. A more current overview of abstract interpretation given by
the same authors can be found in [CC14].

Termination analyses of Prolog programs differ along two major axes: Which lan-
guage constructs they support and whether they follow a direct or a transformational
approach to showing termination. Many works are only concerned with logic program-
ming. This is a subset of actual Prolog, in which only the logic capabilities are used.
Thus, logic programs do not use more complex features of Prolog such as the cut or
arithmetic predicates.

The termination of logic programs is investigated, among others, in [NDS07, OCM00,
SKGST09, SSKG11, Sma04, LMS03, BCG+07, MB05, SDS03]. The nontermination
of such programs is treated in [PM06]. These approaches do not support arithmetic

2

1.2. Contributions

predicates or the cut.

Non-termination analysis for arithmetic programs was presented in [VDS11]. Other
methods for analyzing the termination of logic programs with cut are shown in [SKGN10,
SSKG11, GSSK+12].

A concrete semantics for Prolog including the cut has most recently been presented
in [KK14]. The authors state that this semantics is amenable to abstract interpretation.
To the best of our knowledge, however, no abstract semantics has been defined using
this concrete semantics.

[SLH14] presents a more general analysis, in which the resource usage of a logic pro-
gram is analyzed using abstract interpretation. Termination analysis is a special case of
such an analysis, in which the only question is whether or not the program consumes a
finite amount of the resource time. However, this resource analysis only operates on logic
programs and does not take the cut into account. Arithmetic predicates are recognized,
but not treated specially.

The state of the art in termination analysis is presented yearly at the International
Termination Competition1. This competition featured categories for logic programming
with and without cut as well as full Prolog until 2013.

To the best of our knowledge, there exists no termination analysis that handles a
fragment of Prolog that includes both arithmetic comparisons and evaluations as well
as the cut.

We use procedures that decide the termination problem for integer transition systems
as a backend. The techniques used in the implementation are described in [FGP+09],
which builds on [PR04].

1.2. Contributions

In this section we provide a list of our contributions both on a theoretical and a practical
level. We reference the relevant parts of this thesis for the theoretical contributions and
name our practical contributions. Our contributions are as follows:

Abstract States We extended the definition of abstract states originally provided in
[GSSK+12] in order to carry information about the arithmetic state of variables.
This extension is detailed in Section 4.1.2 (Abstract Program States).

Separation of Semantics and Analysis We separated an abstract semantics for Pro-
log from the termination analysis using this semantics. This separation is evident
in the division between Section 4 (Abstract Semantics) and Section 5 (Termination
Analysis). The combination of semantics and termination analysis was originally
published in [GSSK+12].

Extension of Semantics We extended the semantic rules used for the abstract evalua-
tion of states in [GSSK+12] with rules for handling arithmetic comparisons and
evaluations. These additional rules are defined in Section 4.4.2 (Evaluation of
Arithmetic Comparison) and Section 4.4.3 (Evaluation of Arithmetic Assignment).

1http://termination-portal.org/wiki/Termination_Competition

3

http://termination-portal.org/wiki/Termination_Competition

1. Introduction

Termination Graphs We extended the construction of termination graphs that was orig-
inally given in [GSSK+12]. We added handling of arithmetic comparisons and
evaluations to this construction. The complete construction is detailed in Section
5.1.4 (Construction of Termination Graphs).

Integer Transition Systems We developed a new construction of integer transition sys-
tems from termination graphs. This construction is sound with regards to termi-
nation. The complete construction can be found in Section 5.2.2 (Reduction of
Termination Graphs to ITSs).

Soundness Proofs We showed the soundness of both the abstract semantics and the
termination analysis. The former is shown in Lemma 4.8. The latter is argued in
Theorem 5.1.

Implementation of Transformation to Termination Graphs We implemented the afore-
mentioned extension of the construction of termination graphs from programs in
the termination prover AProVE. We reused parts of the implementation of the
earlier termination analysis from [GSSK+12]. This contribution amounts to ap-
proximately 1250 lines of code added or changed in AProVE.

Implementation of Transformation to Integer Transition Systems In addition to the
implementation of the transformation to termination graphs, we implemented the
construction of integer transition systems from termination graphs in the termina-
tion prover AProVE. This transformation was implemented from scratch, using
the existing termination analyses of AProVE as a backend. This contribution
amounts to approximately 1550 lines of code added to AProVE.

Arithmetic Benchmarks We added 162 numerical benchmarks to the Prolog bench-
mark suite of AProVE, 156 of which were added to the termination problem
database2. A breakdown of the kinds of the examples is given in Section 6.2
(Types of Examples).

Experimental evaluation We evaluated our approach in comparison to four other meth-
ods for showing (non-)termination of Prolog programs. The results of this eval-
uation are presented in Section 6.3 (Discussion of Results).

1.3. Mathematical Preliminaries

This work assumes that the reader has a general understanding of graduate-level math-
ematics and its standard notation. In Section 5 we furthermore assume the reader to
know basic concepts and terminology of graph theory.

Throughout this work we regularly lift functions to sets and sequences without further
mention. This lifting occurs pointwise, by applying the function to all members of the
set or sequence, while retaining the order of elements in the case of the sequence.

Finally, we use the notation f
∣∣
S

to restrict the domain of the function f to the set S.

The function f
∣∣
S

returns f(s) for all s ∈ S and is undefined on all elements not in S.

2http://termination-portal.org/wiki/TPDB

4

http://termination-portal.org/wiki/TPDB

2. Prolog Fragment

The goal of this chapter is to introduce the programming language that we are going to
consider in the remainder of this thesis. This language is a fragment of the full-featured
declarative logic programming language Prolog.

We first give a brief introduction to logic programming in general in Section 2.1.
Afterwards, we discuss the considered fragment of Prolog in Section 2.2 and give an
informal explanation of its semantics. In Section 2.3, we highlight the differences between
the fragment of Prolog that we consider and the complete language that is specified
in [ISO95].

The goal of this section is merely to give a very brief introduction to logic programming
and a fragment of Prolog. For a more thorough tutorial on Prolog, please refer to
[SS86], which is widely regarded as the seminal tutorial for this language.

2.1. Introduction to Logic Programming

In this section we give a brief intuitive introduction to logic programming in general.
For a formal model of programs written in this language, please refer to Section 3.1
(Programs).

Logic programming is a programming paradigm that is vastly different from more
well-known paradigms, such as imperative, functional, or object-oriented programming.
The basic building blocks of an imperative program, for example, are statements that
describe the computation to be carried out by the program. A program consists of a
sequence of such statements that are translated directly to executable code.

Logic programming, in contrast, is declarative in nature. Instead of specifying the
individual steps that produce output for a given input, the program contains rules that
describe the output in relation to the input. The program is then executed by some
runtime that infers the output using the rules present in the program.

As a leading example, we are going to write a program that allows the user to pose
queries about the relationships in some family. This program is going to contain only
the most basic facts about the structure of a specific family as well as general rules that
allow to deduce more complicated relationships between members of the family.

The basic building block of logic programming is a term. Any term is either a
variable, or it consists of a function symbol and a sequence of arguments. Every
function symbol requires a fixed number of arguments, which we call its arity. The
arguments are again terms.

We write a term consisting of the function symbol f and the arguments t1 through
tn as f(t1,...,tn). If f has arity 0, then we omit the brackets and simply write f.

5

2. Prolog Fragment

In order to differentiate between function symbols of arity 0 and variables, we write
function symbols with a lowercase letter at the beginning, whereas variables start with
an uppercase letter from now on.

Example 2.1 (Terms). We pick father, female, and alice as function symbols, where
we let father have an arity of 2, we let female have an arity of 1, and we let alice

have an arity of 0. Using this signature, both father(female(alice),alice) and
father(female(father(X,alice)),Y) are terms, with X and Y being variables in the
latter case. The expression father(alice), however, is not a term, as father has an
arity of 2, but only a single argument, namely alice. For the same reason, father(X)
is not a term.

The intuitive meaning of these function symbols is that we, for example, would
write father(X, alice) to denote that X is the father of alice. We could also write
female(alice) to denote that alice is female. N

If a term contains no variables, we call it ground. We also call a function symbol of
arity 0 a constant. Instead of saying “f is a function symbol with arity n”, we write
“the function symbol f/n.” In logic programming, terms are used to define predicates.
Since a formally precise distinction between terms and predicates would not serve the
goal of this thesis, we do not distinguish strongly between the two for the remainder of
this thesis.

Terms are the single data structure supported by logic programs. A logic program
assigns a truth-value to them. The “meaning” of an imperative program, in contrast, is
essentially defined as a transformation of the input values.

Any ground term is either true or false, depending on the program that is used to
interpret it. Whether a term is true or false with respect to some program is defined in
that program through rules and facts.

A logic program consists of a sequence of rules and facts. These rules and facts define
which terms are true and which are not. An execution of a logic program starts with a
term that may or may not contain variables. If the term does not contain variables, the
goal of the execution is to infer whether or not the term holds true. If, on the other hand,
the term does contain variables, then the goal of the execution is to find assignments of
ground terms to the variables such that the resulting term holds true.

Facts are nothing but terms. Rules are a pair of a term and a non-empty sequence of
terms, which we call the head and the body of the rule, respectively.

Example 2.2 (Rules and facts). We pick the set of function symbols as in Exam-
ple 2.1 and extend it with the constant bob. Both the term father(bob, alice).

and the term father(female(father(X,alice)),Y). are facts. The pair of terms
((father(X, Y)), (female(X), female(Z))) is a rule. The pair (female(X), ε), how-
ever, is not a rule, since the body is empty. N

For a term t, we write t. in order to emphasize t’s role as a fact. We write a rule with
the head t and the body t1 through tn as t :- t1,...,tn. We also call a (possibly
empty) sequence of terms a goal.

6

2.1. Introduction to Logic Programming

A rule can be interpreted as an implication from right to left. The sequence of terms
in the body is interpreted as a conjunction of the terms. Thus, the intuitive meaning of
a rule is that the term at the head holds true if all of the terms in the body hold true.
The variables in the head of a rule are universally quantified, whereas the variables that
occur only in the body of a rule are existentially quantified.

Example 2.3 (Meaning of a rule). For this example, we extend the set of function
symbols from Example 2.2 with grandfather/2.

The rule grandfather(X, Y) :- father(X, Z), father(Z, Y). has the following
meaning in plain English:

For all terms X and Y, the following holds true: If there exists a term Z, such
that both father(X, Z) and father(Z, Y) hold true, then grandfather(X,

Y) holds true.

The rule father(X, Y) :- female(X),female(Z)., on the other hand, has the fol-
lowing meaning in plain English:

For all terms X and Y, the following holds true: If there exists a term Z, such
that both female(X) and female(Z) hold true, then father(X, Y) holds
true.

Note that in both examples X and Y are universally quantified, whereas Z is existentially
quantified.

We see that, using such a rule, we can define the truth-value of terms both according
to their intuitive meaning as well as in contradiction thereto. The truth-value of terms
depends solely on the rules given in the program, but not on any natural interpretation.

N

An execution of a logic program starts with a term, which is called the query. The
behavior of the program differs slightly depending on whether or not the query is ground.
If it is ground, then the program tries to infer whether or not the query holds true using
the rules and facts given in the program. If the query contains variables, however, the
runtime tries to find assignments of ground terms to variables such that the query is
true.

The choice of the algorithm that is used for this search is one of the major points in
which programming languages using the logic paradigm differ. For the next example, we
assume that there are sound and complete algorithms to find the truth-value of terms
and assignments to variables such that a term is true.

Example 2.4 (A logic program). Consider Program 2.1. This program uses the func-
tion symbols from Example 2.2 as well as the additional function symbols male/1,
ancestor/2, and the constants claire and diane.

This program contains the facts that alice, claire and diane are female and that
bob is male. It furthermore contains the facts that bob is alice’s father and the fact that
diane is claire’s mother. The rules of this program state that there are two possible

7

2. Prolog Fragment

Program 2.1 Family relationships

female(alice). male(bob).

female(claire). female(diane).

father(bob, alice). mother(claire, bob).

mother(diane, claire).

ancestor(X, Y) :- mother(X, Y).

ancestor(X, Y) :- ancestor(X, Z), mother(Z, Y).

ways for X to be an ancestor of Y. Either it holds true that X is the mother of Y, or there
must exist some Z such that X is an ancestor of Z and Z is the mother of Y. Thus, we
define the ancestor relation as containing only the maternal ancestors in this example.

Assume we pose the query male(bob) to the program. It would be able to infer that
this term is true, since male(bob) is stated as a fact in the program. It would, however,
not be able to infer that ancestor(claire, alice) is true. This term is neither stated
as a fact in the program, nor is it derivable via the given rules for the function symbol
ancestor. The program would, in contrast, be able to infer that ancestor(diane,

bob) holds true.
If we posed the query ancestor(X, bob) to the program, it would try to find assign-

ments of terms to X such that the query holds true. There are two such assignments to
X, namely X 7→ claire and X 7→ diane. N

Logic programming is only one of many paradigms that a programming language can
follow. As such, it is better to think of logic programming as a principle, rather than
as a concrete programming language. In particular, the logic programming paradigm
states nothing about the algorithm that is used to infer the truth value of terms from
a program. It also does not support arithmetic comparisons or evaluations. Function
symbols such as </2, =/2 or +/2 are undefined as well as constants such as 17 or -3.8.
Finally it is not possible for the program to take any influence on the inference that is
performed on it in pure logic programming.

In this work we consider a fragment of the logic programming language Prolog. The
complete Prolog language defines an algorithm for the inference of the truth values of
terms and it contains built-in predicates. In the next section we discuss this fragment
of Prolog.

2.2. Syntax and Informal Semantics of Prolog Fragment

In this section we discuss the fragment of Prolog that we consider for the remainder
of the thesis. First we explain how Prolog infers satisfying assignments of terms to
variables and the truth value of variable-free terms. We then continue to explain those
built-in predicates of Prolog that we include in our fragment, namely the cut and
predicates for arithmetic comparison and assignment.

We give an intuitive explanation of the semantics of this fragment according to [ISO95].
For a more precise definition of this semantics, please refer to that work or to [DEDC96].

8

2.2. Syntax and Informal Semantics of Prolog Fragment

We also provide a formal semantics of this fragment in Section 3 (Concrete Semantics),
which is equivalent to the “official” semantics from [ISO95].

In order to describe the meaning of a Prolog program, we first need to describe the
notion of unification. Unification is a partial operation that takes two terms and returns
a substitution of variables by terms. The idea is that two terms unify if the variables
in these two terms can be replaced in such a way that both terms are the same with
respect to the replacement. We call the result of the unification a unifier.

Example 2.5 (Unification). Consider the two terms male(bob) and male(X). These
terms unify with the unifier (X 7→ bob). This is the only unifier that unifies these two
terms. The two terms father(X, alice) and father(bob, Y) unify as well with the
unifier (X 7→ bob, Y 7→ alice). The terms female(X) and male(Y) do not unify, however,
due to the differing function symbols female/1 and male/1. N

A precise definition of unifiers can be found in Section 3.2. If two terms t1 and t2
unify with some substitution σ, we say that t1 and t2 unify with the unifier σ. In
that case it holds that σ(t1) is the same as σ(t2).

Now assume that we have two terms t1 and t2 and two unifiers σ1 and σ2, which
are not equal. We call σ1 more general than σ2 if we can find another non-trivial
substitution γ, such that γ(σ1(t1)) is the same as σ2(t1). The most general unifier
of two terms is a unifier for which no other, more general unifier exists.

Example 2.6 (Most general unifier). The terms mother(X, alice) and mother(Y,

alice) unify, for example, with the unifiers (X 7→ Z, Y 7→ Z) and (X 7→ female(Z), Y 7→
female(Z)). The former substitution is the most general unifier of the two terms. N

For simplicity, we always assume that the unifier always uses fresh variables that
occur in neither of the two terms that are unified. This simplifies reasoning about the
unification. It does not reduce the generality of unification, as it can be achieved by a
simple renaming of the unified term.

Prolog follows the paradigm of logic programming in that programs written in this
language consist of facts and rules. Both facts and rules are written as they are in
the intuitive introduction to logic programming in the preceding section. In order to
evaluate a query, Prolog explores a tree via depth-first search.

The root of this tree consists of the query given at the start of the program. The
children of this node are all the possible ways to show that the query holds true. Since
the truth of the query is defined via the facts and rules, the node has one child for each
fact that starts with the same function symbol as the query as well as one child for each
rule whose head starts with the same function symbol as the query does. These child
nodes are then evaluated depth-first similar to how the root node was evaluated.

Every node of this tree is a goal that Prolog tries to show to be true. The children
of a given node are defined depending on the function symbol at the head of the first
term of the goal. This function symbol may either be a built-in one, which we will cover
later in this section, or it may be a user-defined one, such as male/1 in Example 2.4.

If the function symbol is user-defined, then all facts and rules that start with the
function symbol are collected. In the case that a fact unifies with the first term of a goal

9

2. Prolog Fragment

with the unifier σ, then this term is removed and σ is applied to the remaining goal. If,
however, the head of a rule unifies with the first predicate of a goal with the unifier σ,
this predicate is replaced by the body of the rule after application of σ. The substitution
σ is applied to the remainder of the goal as well.

If the function symbol is built-in, it is evaluated to true or false depending on the
rules corresponding to this predicate. If it evaluates to true, then the term is removed
from the goal and the evaluation continues with the remainder of the goal. Otherwise,
the current branch is abandoned. We will explain the rules for these function symbols
later in this section.

Example 2.7 (Inference in Prolog). Consider Program 2.1 and the query ancestor(X,

bob). This query induces the search tree shown in Figure 2.1. The nodes are numbered
in the order that they are explored in.

There are two ways that Prolog can infer the truth of the query. The first way is by
traversing states 1, 2, and 3 in this order. X is replaced with claire along the transition
from 2 to 3. The other way is by traversing states 1, 4, 5, and 7. Along this path, X
is instantiated to diane at the transition from state 5 to 7. Thus, Prolog returns the
two answers X = claire and X = diane, just as described in Example 2.4.

State 6 has no successors, since there is no fact or head of a rule which unifies
with mother(bob, bob). This tree is infinite since Prolog always tries to use both
ancestor-rules to find new answers to the query. Since the second rule is defined re-
cursively, Prolog applies this rule infinitely often and the inference algorithm never
terminates. N

Prolog also provides pre-defined arithmetic predicates and even arithmetic functions.
The presence of functions is a slight deviation from logic programming, but makes the
resulting language easier to use. An arithmetic comparison takes the form e1 ./ e2, where
./ is one of =:=, =\=, <, >, =<, and >=, while e1 and e2 denote arithmetic expressions.
Arithmetic expressions may include variables and integer literals as well as the unary
and binary arithmetic operators abs, sign, +, -, *, //, **, mod, and rem. When the
inference algorithm encounters such a comparison, it tries to evaluate the expression on
both sides of the comparison and compares them according to the specified comparison
operator. There are three possible outcomes of this comparison.

Evaluation Error It may be the case that the evaluation of the expression on either
side of the comparison results in an error. This is possible, for example, via a division
by zero, or if a sub-expression is an uninstantiated variable or user-defined term instead
of a built-in function. In this case, Prolog raises one of several exceptions [DEDC96,
Section 6.2.1]. Since our fragment of Prolog does not support exception handling, this
leads to undefined behavior. In our formalization, we simply abort the inference in this
case.

Success If both expressions successfully evaluate to integers, then the resulting integers
are compared according to the comparison specified by the operator. If this comparison

10

2.2. Syntax and Informal Semantics of Prolog Fragment

ancestor(X,bob)

mother(X,bob) ancestor(X,Z1),mother(Z1,bob)

� mother(X,Z1),mother(Z1,bob)

mother(bob,bob) mother(claire,bob)

�

ancestor(X,Z2),

ancestor(X,Z1),mother(Z1,bob)

.

1

2

3

4

5

6 7

8

9

Figure 2.1.: The search tree induced by ancestor(X, bob) on Program 2.1

evaluates to true, then the whole term is treated like a fact, removed from the current
goal and evaluation continues with the remaining terms.

Failure If there is no error during the evaluation of the expressions on either side of
the comparison and the comparison between the resulting integers evaluates to false,
then the comparison is treated like a term for which no rules or facts are defined. The
inference algorithm discards the branch and continues the search in the next one.

There is also the pre-defined function symbol is, which is used to unify integers with
terms. Terms using the is-symbol are of the form t is e. Similar to the evaluation
of expressions for arithmetic comparison, the expression e is evaluated to an integer. If
this evaluation results in an error, the behavior is the same as during the evaluation
of an expression for an comparison, that is, the inference is aborted and the program
terminates. If the evaluation succeeds and the expression evaluates to some integer n,
it is checked whether t and n unify. If this is the case, then the substitution (t 7→ n)
is applied to the remaining terms and the inference continues with the remaining goal.
Otherwise, the search abandons the current branch of the search tree and continues in
the next one.

Example 2.8 (Arithmetic in Prolog). Program 2.2 defines the computation of the
factorial of a number. The function symbol fac/2 is defined such that the term fac(X,

11

2. Prolog Fragment

Y) holds true if Y is the factorial of X. We show the search tree for the query fac(1,

Res) in Figure 2.2.
Neither node B nor node C have any children, since both comparisons 1=:=0 and

1-1>0 are obviously false. The only succeeding instantiation that is found is the one
found on the path to node E. Along this path, Res is instantiated to the result of 1*1

along the transition from D to E. Thus, Prolog reports that the single result is Res =

1, as was expected. N

Program 2.2 Computation of the factorial

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1>0,fac(1-1,Y1),

Res is Y1*1

A

1=:=0,Res is 1

B

fac(1-1,Y1),

Res is Y1*1

1-1>0,fac(1-1-1,Y2),

Y1 is Y2*(1-1),Res is Y1*1

C

1-1=:=0,Y1 is 1,

Res is Y1*1

Y1 is 1,Res is Y1*1

Res is 1*1

D

�

E

Figure 2.2.: The search tree induced by fac(1, X) on Program 2.2

In the previous example, after exploring the path leading to node E, Prolog back-
tracks through the tree and tries to show that the goal in node B holds true. However,
since there are children of node A, the programmer knows that the evaluation of the first
term of the goal in node A must have succeeded. Hence, we must have shown that 1

> 0 holds true. Thus, the programmer knows that 1 =:= 0 cannot hold true. Prolog
does not have that knowledge and thus has to spend time to show that 1 =:= 0 does

12

2.3. Differences between Prolog Fragment and ISO-Prolog

not hold. This time is negligible in this case, but may impact performance significantly
in more complicated programs.

In order to address this, Prolog has a feature called the cut, which is written as !.
This symbol can occur in the place of a term in the right-hand side of a rule. When the
interpreter reaches the cut, it prunes the current search tree. It does so by cutting off
all alternative choices it had for showing the truth of the last term for which it tried out
rules. Reaching the cut does not, however, cut off all unexplored branches, but only the
most recently produced ones.

Example 2.9 (The cut). Program 2.3 shows a program that computes the factorial of
a number using the cut. Consider the first rule. After Prolog succeeds to show that
the fact X > 0 holds true for some instantiation of X, it reaches the cut and will not try
to backtrack to show that X =:= 0 holds true. The search tree induced by the query
fac(1, Res) on Program 2.3 is shown in Figure 2.3. The branch that is not searched
due to the evaluation of the cut is drawn gray.

Program 2.3 Computation of the factorial with cut

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

Program 2.4 shows that the cut only removes the most recently produced unexplored
branches. The search tree induced by the query f(X) on this program is shown in figure
2.4. The branches not explored due to reaching the cut are drawn in gray. Evaluating
the cut in node D only cuts off node E, since the last evaluation of a user-defined function
symbol at this point happened during evaluation of node B. There was another choice of
rules when evaluating node A. However, node C, which has not yet been explored upon
reaching the cut, is not cut off. This shows that only the last choice of rules is cut off as
a result of evaluating the cut.

Program 2.4 Cutting branches on the same level

f(X) :- g(a). f(X) :- h(b).

g(X) :- !, h(a). g(X) :- h(b).

h(b).

N

While we only give an informal explanation of the behavior of the cut at this point,
we define it formally later on in Section 3.2.

2.3. Differences between Prolog Fragment and ISO-Prolog

In the previous section we have discussed the programming language that we are going to
consider for the remainder of this work. This language is a fragment of the full featured
Prolog language, which is also called ISO-Prolog. Its official definition can be found

13

2. Prolog Fragment

fac(1,Res)

1>0,fac(1-1,Y1),

Res is Y1*1
1=:=0,Res is 1

fac(1-1,Y1),

Res is Y1*1

1-1>0,!,fac(1-1-1,Y2),

Y1 is Y2*(1-1),Res is Y1*1

1-1=:=0,Y1 is 1,

Res is Y1*1

Y1 is 1,Res is Y1*1

Res is 1*1

�

Figure 2.3.: The search tree induced by fac(1, X) on Program 2.3

in [ISO95]. Since we only consider a fragment of the full language, there are some
features of ISO-Prolog that are missing from our fragment. In this section we give a
brief overview over the differences between our fragment and the complete language.

One major feature of ISO-Prolog that our fragment does not support is the handling
of exceptions. In the full language, it is possible to raise and handle exceptions using
the built-in predicates throw/1 and catch/3, which behave similarly to the keywords of
the same name from imperative languages. In addition to exceptions thrown by the user
using the throw/1-predicate, an exception may also be raised due to an error during
the search for answer substitutions. In particular, this may happen if there is an error
during the evaluation of an arithmetic expression, such as division by zero or if a variable
occurs as a subexpression. In this case, one of several exceptions is raised by the runtime
system, which can only be caught using the catch/3-predicate. Since this predicate does
not exist in our fragment, we are unable to handle such errors. The exact behavior of
ISO-Prolog during the evaluation of arithmetic expressions is defined in [DEDC96,
Section 6.2.1].

Another omission from our fragment is the presence of real numbers and manipulations
of the underlying representation of numbers. Prolog features full support for both
integer and floating point numbers as defined in [ISO94]. In addition to the arithmetic
functions present in our fragment, there are also pre-defined operators that work on

14

2.3. Differences between Prolog Fragment and ISO-Prolog

f(X)

g(a) h(b)

�!, h(a)

h(a)

h(b)

A

B C

D E

Figure 2.4.: The search tree induced by f(X) on Program 2.4

floating point numbers, such as floating point division, the natural logarithm or the
calculation of the square root. There are also functions that operate on the internal
representation of the numbers, such as bitwise conjunction or disjunction and bitwise
complementation. All of these features are omitted from our fragment.

Furthermore, there is a set of predicates that modifies the search through the tree
during runtime. The most often used one of these is the \+/1-predicate, which succeeds
if its single argument fails. Some other predicates allow more intricate manipulation
of the program at runtime, such as the addition and removal of rules and facts during
the inference. These predicates are also not supported by our fragment. It is, however,
possible to rewrite the \+/1-predicate using the cut. Since our fragment contains the
cut, this predicate can be removed from the program in a preprocessing step.

In order to be able to react to user input, Prolog also features a number of predicates
that perform input and output, both from and to the user in an interactive way as well
as from and to files. Since our goal in this thesis is to develop a semantics that allows for
automated and static analysis of the behavior of a program, we also omit these predicates
from our fragment.

Finally, there exist some constructs that are mainly included as syntactic sugar, such
as the predicates ->/2, ->;/3, or ;/2, which represent if-then, if-then-else and boolean
disjunction, respectively. Even though it may be possible in some cases to remove this
syntactic sugar through a preprocessing step, this is not the focus of this thesis. We thus
assume that programs are written without these predicates.

15

3. Concrete Semantics

In the previous chapter, we gave an overview over the fragment of Prolog that we are
going to consider for the remainder of this thesis as well as an informal explanation of
the semantics of this fragment. The goal of this chapter is to formalize these semantics.

We start with a formalization of programs in Section 3.1. In Section 3.2 we give an
overview over a state-based formal semantics for our fragment. This semantics was first
presented in [SESK+12]. We present the rules that are relevant for the remainder of this
work and point to that work for a more thorough explanation. Finally, we formally state
the equivalence of this semantics with the ISO-semantics of Prolog in Section 3.3 and
refer to [SESK+11] for complete proofs.

3.1. Programs

In Section 2.2 (Syntax and Informal Semantics of Prolog Fragment), we gave an
informal explanation of the syntax of programs written in our fragment of the language.
However, in order to be able to define a formal semantics, we first need a more rigorous
formal representation of a program. In this section we define such a representation

As mentioned previously, the most basic unit of a Prolog program is a term. The
intuition behind the notion thereof was explained in Section 2.1 (Introduction to Logic
Programming). We now proceed to formally define terms. The following definitions are
based on the definitions in [Gie11, Section 2.1].

Definition 3.1 (Signature, arity, constant). For all i ∈ N0 let Σi be some set of symbols.
We call Σ := ∪i≥0Σi a signature if all Σi are pairwise disjoint and Σ is finite and
nonempty. We call the elements of Σi i-ary function symbols. Furthermore, we call the
members of Σ0 constants. �

As previously stated in our informal explanation of terms, a term is either a variable,
or it consists of a function symbol and as many arguments as the arity of the function
symbol requires.

Definition 3.2 (Variable, term, subterm). Let Σ be a signature and let V be a non-
empty and countably infinite set of variables, such that Σ and V are disjoint. The set
TermsΣ,V is defined as the smallest set for which all of the following conditions hold:

• V ⊆ TermsΣ,V
• Σ0 ⊆ TermsΣ,V
• For all n ∈ N the statement

f ∈ Σn and t1, . . . , tn ∈ TermsΣ,V implies f(t1, . . . , tn) ∈ TermsΣ,V

17

3. Concrete Semantics

holds true

We call the elements of TermsΣ,V terms. For a given term t, we denote the set of
variables that appear in t as V(t).

A term t′ is called a subterm of another term t if either t′ = t holds true or if t is of
the form f(t1, . . . , tn) and there is some i ∈ [1, n] such that t′ is a subterm of ti. �

In our intuitive explanation, we have made a distinction between rules and facts. Rules
consisted of a term called the head and a nonempty sequence of terms called the body,
whereas facts consisted of a single term. In order to have a uniform representation of
facts and rules, we only consider rules in the remainder of this work. A fact is written
as a rule with an empty body. This removes the formal representation further from
the actual syntax of a Prolog program, but makes it easier to treat rules and facts
uniformly, as we will see in Section 3 (Concrete Semantics).

Definition 3.3 (Goal, rule). Let Σ be a signature and let V be a set of variables. We
define:

GoalsΣ,V :=
{
t1, . . . , tn | n ∈ N0, ti ∈ TermsΣ\V,V

}
The elements of GoalsΣ,V are called goals. We write the empty goal as �.

We also define the set:

RulesΣ,V := TermsΣ\V,V ×GoalsΣ,V

The elements of RulesΣ,V are called rules. If (h, b) is a rule, we also write h :- b. �

Since a program is nothing but a finite sequence of rules, we can now define a program.
We have to consider the built-in predicates that occur in our fragment of Prolog, which
must not be redefined by the user. Hence, they may only occur in the body of a rule, but
not in its head. Furthermore, we have to allow the presence of the cut on the right-hand
side of any rule.

Definition 3.4 (Signature with built-ins, program). Let Σ = ∪i≥0Σi be a signature and
let V be a set of variables. We define the signature with built-ins ΣBI as

ΣBI := (Σ0] {!}] Z)

(Σ1] {abs, sign,−})
(Σ2] {+,−, ∗, //, ∗∗,mod , rem}] {=:=,=\=, <,>,=<,>=}] {is})

We define ProgramsΣ,V as

ProgramsΣ,V := {r1, . . . , rn | n ∈ N0, ri ∈ RulesΣBI ,V , ri is valid},

where, in this context, for a rule h :- t1, . . . , tn to be valid, it has to fulfill all of the
following conditions:

• h is an element of TermsΣ\V,V
• For all ti, if ! is a subterm of ti, then ti = !

18

3.2. States and Evaluation

• For all ti = f(t′1, . . . , t
′
m), none of {=:=,=\=, <,>,=<,>=, is} occur in t′1 through

t′m
• For all ti = f(. . .), f is not one of {abs, sign,−,+, ∗, //, ∗∗,mod , rem}, nor is it a

member of N.

An element of ProgramsΣ,V is called a program. �

The built-in predicates can only appear in the body of the rule. The cut may only ap-
pear on its own, not as an argument to any other predicate. Furthermore, an arithmetic
comparison may not occur inside the argument of a predicate, but only at the topmost
“level” of a term. Similarly, arithmetic operators and integer literals may occur only
inside the arguments to a term, but not as a term on their own.

The latter three conditions for the validity of a rule are not formally necessary, but
they serve to exclude those formal descriptions that do not correspond to actual Pro-
log programs. A program that contains any rules that are not valid according to this
definition will be rejected by the interpreter. They do not, however, influence the formal
semantics of the program.

Example 3.1 (Formalization of Program 2.3). We construct the formalization P of
Program 2.3, which we presented on page 13. The signature Σ of Program 2.3 consists
only of the single symbol fac, which is a member of Σ2. The set of variables V is some
superset of {X,Y, Y1}.

The program P contains only two rules, which we call r1 and r2. They are defined as

r1 := fac(X,Y) :- >(X, 0), !, fac(−(X, 1), Y1), is(Y, ∗(Y1, X))

r2 := fac(X,Y) :- =:=(X, 0), is(Y, 1)

We can easily see that both of these rules are valid according to Definition 3.4. Thus,
P = r1, r2 and P ∈ ProgramsΣ,V . N

Every program that is written in the fragment that we discussed in Section 2.2 (Syntax
and Informal Semantics of Prolog Fragment) has exactly one formal definition up to
superfluous elements of the signature and the set of variables. We thus assume in the
remainder of this thesis that a program is given to us in this formal model instead of
plain source code. Furthermore, we often omit Σ and V, as they are easy to infer from
the rules of the program.

3.2. States and Evaluation

We have defined the behavior of a program informally in Section 2.2 (Syntax and Informal
Semantics of Prolog Fragment). However, in order to argue about the behavior in
a formally rigorous way, we need a formal semantics. The semantics of Prolog are
officially defined in [ISO95]. These semantics are defined via a depth-first search through
a tree.

While intuitive, this semantics is not very amenable to abstract interpretation, as
most methods of abstract interpretation assume that the behavior of programs is defined

19

3. Concrete Semantics

via a linear sequence of states. Thus, we present a state-based operational semantics
for programs, which was first introduced in [SESK+12]. This semantics defines the
evaluation of a query on a program in terms of states. It consists of a definition of states
for Prolog as well as semantic rules that define how states are evaluated.

These semantic rules are defined for the full extent of ISO-Prolog. We are, however,
only going to present the semantic rules that are relevant for our fragment.

The major insight of this state-based semantics is that the program together with
the inference algorithm can be treated like an imperative program. Since the algorithm
implements a depth-first search through the tree induced by the query, all that must be
stored is the current state of the search.

This state is usually stored as a stack of nodes that have not yet been visited and a
set of nodes that already have been visited. However, we do not need to store the nodes
that were already visited, since the structure of a tree prevents us from reaching them
again.

Hence, we only need to keep track of the nodes that still need to be searched. Due
to this reasoning, our states consist of nothing but the stack of the depth-first search,
which is a stack of goals that need to be shown to hold true. We use the symbol | as a
separator for these goals.

One more thing to keep in mind is the cut. In order to be able to evaluate the cut
correctly, we need to keep track of the terms that result from a single choice of rules. To
do this, we use the symbol ? together with an index in order to denote the end of the
“scope” of cuts. Since we have to distinguish between cuts in different scopes, we index
both the cut symbols and the end-of-scope markers with a natural number.

Additionally, we must be able to label goals with a rule that we are going to apply for
the evaluation of user-defined predicates. We give a more detailed explanation of this
behavior later in this section. Furthermore, we need an additional error state to denote
an error during arithmetic evaluation as discussed in the previous chapter.

Definition 3.5 (Concrete state). Let P be some program and let Σ and V be its
signature and set of variables, respectively. We define the goal signature Σ′ of P as

ΣG := (ΣBI \ {!}) ∪ {!m, ?m | m ∈ N0},

where all !m and ?m have arity 0. We define the set

ConcreteStatesP,V :=

{〈Err〉} ∪ {〈g1 | · · · | gn〉 | n ∈ N0, gi ∈ GoalsΣG,V × (RulesΣG,V ∪ {ε}) , gi is valid},

where, in order for a goal gi = t1, . . . , tni to be valid, it has to fulfill all of the following
conditions:

• If ?k is a subterm of some tj , then ni = 1 and tj = ?k

• If !k = tj in gi for some natural numbers k and j, then there must exist some
m ∈ [i+ 1;n] such that gm = ?k

20

3.2. States and Evaluation

An element of ConcreteStatesP,V is called a concrete state of P . We write an element
(g, r) of GoalsΣG,V × (RulesΣG,V ∪ {ε}) as gr. If r = ε, we simply write g.

�

The original definition of the program state in [SESK+12] also stores the answer
substitution that is being built in the state. In the remainder of this thesis, however, we
do not require this substitution. Thus, we omit it in the definition of the state.

Example 3.2 (Concrete state). Reconsider Program 2.1 and Figure 2.1 on pages 8 and
11, respectively. When the depth-first search is just about to enter state 6, there are
three unexplored nodes on its stack, namely the nodes 6, 7, and 9. The nodes 6 and 7
result from the same case distinction, namely the one in node 5. There are two other
case distinctions before that one, namely those in state 4 and 1. Thus, there are three
scope markers in the current state, ?1, ?2, and ?3, denoting the case distinctions in states
1, 4, and 5, respectively. Hence, the current state of the inference is:

s = 〈 mother(bob, bob) | mother(claire, bob) | ?3 |
ancestor(X,Z2), ancestor(X,Z1),mother(Z1, bob) | ?2 | ?1〉

We write s to denote concrete states. N

Using this definition, we can now define the initial state of an evaluation. At the start
of the inference, there is only a single node that is yet to be searched, namely the node
consisting only of the starting term.

Definition 3.6 (Initial state). Let P be some program over the signature Σ and let V
be some set of variables. Let t ∈ TermsΣBI

be some term. The initial state stinit of P
is defined as:

stinit := 〈t〉

�

Our goal for the remainder of this section is to define the execution relation → over
pairs of concrete states. The idea behind this relation is that s → s′ holds true for two
states s and s′ if s evaluates to s′ with a single step of the inference algorithm.

The only possible steps are either a continuation of the depth-first search into the
leftmost unexplored node or the abandonment of the leftmost branch to continue with
the second one from the left. We define this relation using the standard notation for
semantic rules, where we write

s
s′

to denote that state s evaluates to s′. In these rules, t and T denote terms and sequences
of terms, whereas g and G denote goals and sequences of goals.

All semantic rules operate by evaluating the first term of the first goal of a state. The
aim is to emulate depth-first search, the behavior of which depends on the first term of
the leftmost goal of the tree.

21

3. Concrete Semantics

Concrete Evaluation Rule 3.1 Success Rule

Success
〈� | G〉
〈G〉

The easiest case occurs if the first goal of a state is the empty goal. In this case the
tree-based inference succeeded in the leftmost branch and we can simply continue the
inference with the next goal. This behavior is captured in Concrete Evaluation Rule 3.1.

The other major mechanism that we need to emulate is the evaluation of terms. In
our intuitive explanation in Section 2.2 we already explained the process of unification
of two terms. We now give a precise and formal definition of this notion.

Definition 3.7 (Unification, most general unifier). Let t1 and t2 be terms over some
signature Σ and some set of variables V. We call a function σ : V → TermsΣ\V,V a
unifier of t1 and t2 if

σ(t1) = σ(t2)

holds true. If there exists no unifier for some pair of terms t1 and t2, we say that t1 and
t2 do not unify.

If for some pair of terms t1 and t2 there exist unifiers σ1 and σ2, we call σ1 more
general than σ2 if there is some other substitution δ : V → TermsΣ\V,V , which is not
the identity function, such that

δ(σ1(t1)) = σ2(t1)

holds true.
For two terms t1 and t2 we call the unifier σ for which no more general unifier exists

the most general unifier of t1 and t2, which we denote by mgu(t1, t2) = σ. If t1 and
t2 do not unify, we write mgu(t1, t2) = ⊥. �

In the remainder of this thesis, we also write tσ to denote σ(t). We also write Tσ,
gσ, and Gσ to denote the pointwise application of σ to all elements of the sequence of
terms T , the goal g, and the sequence of goals G, respectively.

For each pair of terms t1 and t2, there exists at most one most general unifier up to
variable renaming. Hence, the function mgu is well-defined. It is furthermore efficiently
computable, as shown in [DEDC96, Chapter 3].

Using the most general unifier, we now define rules for the evaluation of user-defined
predicates. While such predicates are evaluated in a single step in the original inference
algorithm, we split the evaluation in the state-based semantics. Recall that in order to
evaluate a term, we first collect all the rules that are applicable to it. We then check
whether or not the head of the rule unifies with the term.

In a first step, we copy the term to be evaluated multiple times and label each copy
with the rule that we want to apply. For this we introduce Concrete Evaluation Rule 3.2.
In this rule, we also rename all the variables occurring in the rules in order to safeguard
against inadvertent aliasing of variables. We also use the helper function SliceP (t), which

22

3.2. States and Evaluation

returns a sequence of those rules in P whose head starts with the same function symbol
as t. Finally, we add a scope end marker in order to make it possible to evaluate cuts
correctly. These markers will later be used in Concrete Evaluation Rule 3.5.

Concrete Evaluation Rule 3.2 Case Rule

Case
〈(t, T) | G〉〈

(t, T)r
′
1 | . . . | (t, T)r

′
n |?m | G

〉
Where: SliceP (t) = r1, . . . , rn

r′i := ri [V 7→ Vm] [! 7→!m]
m ∈ N does not occur as an index in t, T or G
t = f(. . .) and f 6∈ {=:=,=\=, <,>,=<,>=, is}

In the second step, we check for each rule individually if its head unifies with the
current term. If this is the case, we replace the term with the body of the rule and
continue the inference using Concrete Evaluation Rule 3.3. If, however, the head of the
rule and the term do not unify, we immediately abandon that branch and continue with
the next unexplored branch. For this, we introduce Concrete Evaluation Rule 3.4.

Concrete Evaluation Rule 3.3 Evaluation Rule

Eval

〈
(t, T)h :- B | G

〉
〈(Bσ, Tσ) | G〉

Where: σ = mgu(t, h) 6= ⊥

Concrete Evaluation Rule 3.4 Backtracking Rule

Backtrack

〈
(t, T)h :- B | G

〉
〈G〉

Where: mgu(t, h) = ⊥

It now remains to define rules to evaluate built-in predicates. We have to deal with
two kinds of these predicates, namely the cut and the arithmetic predicates. First, we
define rules for handling the cut. In order to evaluate this predicate, we use the end-
of-scope markers that we introduce into the state when using Concrete Evaluation Rule
3.2. We simply remove all goals except for the current one up to, but not including the
corresponding marker. This is implemented in Concrete Evaluation Rule 3.5.

We keep the current end-of-scope marker, since there may be more cuts contained in
T . This strategy will eventually lead to a case where the current goal is nothing but this
end marker. Since it does not have any effect on the computation, but exists only for

23

3. Concrete Semantics

Concrete Evaluation Rule 3.5 Cut Rule

Cut
〈(!n, T) | G | ?n | G′〉
〈T | ?n | G′〉

the purpose of bookkeeping, we can simply remove it from the state and continue with
the next goal. We formalize this behavior in Concrete Evaluation Rule 3.6.

Concrete Evaluation Rule 3.6 Failure Rule

Failure
〈?n | G〉
〈G〉

The remaining semantic rules handle arithmetic comparisons and assignments. We
start with the handling of arithmetic comparisons. As explained informally in Section
2.2, in order to perform an arithmetic comparison, we first evaluate both arithmetic
expressions on the left- and right-hand side. If either evaluation fails, we transition to
an error state and the inference terminates. Should the evaluations of the expressions
on both sides succeed, however, we simply perform the arithmetic comparison of the two
resulting natural numbers.

In the case that this comparison succeeds, we continue with the next term of the
current goal. Should the comparison fail, we abandon the current goal and continue with
the next one. We formalize the evaluation of arithmetic expressions and comparisons in
the functions evalE and evalC .

Definition 3.8 (Evaluation of Arithmetic Expressions, Comparisons). We define the
helper functions P2M un

E and P2M bin
E to translate from Prolog notation to mathemat-

ical notation as follows:

f − abs sign

P2M un
E (f, n) −1 · n sign(n) · n sign(n)

f + − ∗

P2M bin
E (f, n1, n2) n1 + n2 n1 − n2 n1 · n2

f // ∗∗

P2M bin
E (f, n1, n2) sign(n1/n2) · b|n1/n2|c nn2

1

f mod rem

P2M bin
E (f, n1, n2) n1 − (bn1/n2c) · n2 n1 − (sign(n1/n2) · b|n1/n2|c) · n2

where sign(n) := 1 if n ≥ 0 and sign(n) := −1 otherwise.

Let t be some term. We define the evaluation function for expressions of the

24

3.2. States and Evaluation

type evalE : Terms → Z ∪ {⊥} as follows:

evalE(t) = t if t ∈ Z

evalE(op(t)) = P2M un
E (f, n)

if n = evalE(t) 6= ⊥
and op ∈ {abs, sign,−}

evalE(op(t1, t2)) = P2M bin
E (f, n1, n2)

if n1 = evalE(t1) 6= ⊥, n2 = evalE(t2) 6= ⊥,
and op ∈ {+,−, ∗, ∗∗}

evalE(op(t1, t2)) = P2M bin
E (f, n1, n2)

if n1 = evalE(t1) 6= ⊥, n2 = evalE(t2) 6= ⊥,
n2 6= 0, and op ∈ {//,mod , rem}

evalE(t) = ⊥ otherwise

We define the conversion function for comparison operators P2M C with the following
value table:

./ =:= =\= < > =< >=

P2M C(./) = 6= < > ≤ ≥

Using this helper function, we define the evaluation function for comparisons of
the type evalC : Terms → {true, false,⊥} as follows:

evalC(./(t1, t2)) ≡ (n1 P2M C(./) n2)
if n1 = evalE(t1) 6= ⊥, n2 = evalE(t2) 6= ⊥,
and ./ ∈ {=:=,=\=, <,>,=<,>=}

evalC(t) = ⊥ otherwise

�

These evaluation functions have the properties that one would assume from such
functions. In order to show the soundness of our abstract semantics later on, we need
two such properties, which we state here.

Lemma 3.1. Let t be some term. If evalC(t) 6= ⊥, then there exists no subterm t′ of t
such that evalC(t′) = ⊥. �

Proof. This can easily be seen using structural induction over the structure of t. We
omit the full proof for the sake of readability at this point.

Lemma 3.2. Let t be some term. If evalC(t) 6= ⊥, then there exists no subterm t′ of t,
such that t′ is a program variable. �

Proof. This statement follows directly from Lemma 3.1. Since evalC(X) is undefined
for all program variables X, it would contradict that lemma if there were a term that
contained a program variable, but that evaluated to something other than ⊥.

Using these definitions we can now concisely define rules for the three possible results
of an arithmetic comparison. The error case, in which the evaluation of the expression
on either side fails, is formalized in Concrete Evaluation Rule 3.7. The case in which the
evaluation of the comparison succeeds is formalized in Concrete Evaluation Rule 3.8. If

25

3. Concrete Semantics

Concrete Evaluation Rule 3.7 Arithmetic Comparison Rule (Error)

ArithCompErr
〈(t, T) | G〉
〈Err〉

Where: t = ./(t1, t2), for ./ ∈ {=:=,=\=, <,>,=<,>=}
evalC(t) = ⊥

Concrete Evaluation Rule 3.8 Arithmetic Comparison Rule (Success)

ArithCompSucc
〈(t, T) | G〉
〈T | G〉

Where: t = ./(t1, t2), for ./ ∈ {=:=,=\=, <,>,=<,>=}
evalC(t) ≡ true

the comparison fails, we apply Concrete Evaluation Rule 3.9 and continue with the next
goal.

The final built-in function symbol that we need to handle is the is-symbol. This
symbol expects a term on its left-hand side and an arithmetic expression on its right-
hand side. If the evaluation of the expression fails, we transition to the same error state
as before using Concrete Evaluation Rule 3.10.

If the evaluation of the expression succeeds and the result unifies with the term on
the left-hand side, then the resulting substitution is applied to the remainder of the
terms and evaluation continues with the remaining terms. This behavior is formalized
in Concrete Evaluation Rule 3.11.

If the result of the evaluation of the right-hand side does not unify with the left-hand
side of the function symbol, then this is treated like a normal unification error and the
evaluation continues with the remaining goals. We apply rule Concrete Evaluation Rule
3.12 in this case.

Using these rules, we are able to emulate the inference algorithm of Prolog. We
present the application of these rules in the following example.

Example 3.3 (State-based evaluation of Program 2.3 on fac(1,Res)). Consider Program
2.3 on page 13, which we call P in the remainder of this example, and the term q :=
fac(1,Res). We have shown the evaluation of this term using the original inference

Concrete Evaluation Rule 3.9 Arithmetic Comparison Rule (Failure)

ArithCompFail
〈(t, T) | G〉
〈G〉

Where: t = ./(t1, t2), for ./ ∈ {=:=,=\=, <,>,=<,>=}
evalC(t) ≡ false

26

3.2. States and Evaluation

Concrete Evaluation Rule 3.10 Arithmetic Evaluation Rule (Error)

IsErr
〈(is(t1, t2), T) | G〉

〈Err〉

Where: evalE(t2) = ⊥

Concrete Evaluation Rule 3.11 Arithmetic Evaluation Rule (Success)

IsSucc
〈(is(t1, t2), T) | G〉

〈Tσ | G〉

Where: evalE(t2) 6= ⊥
σ = mgu(t1, evalE(t2)) 6= ⊥

algorithm in Example 2.9 on page 13. In this example we evaluate this term on P using
the state-based semantics.

According to Definition 3.6, the initial state of this computation is:

sqinit = 〈fac(1,Res)〉

Since the first and only goal has a term at its head that starts with a user-defined
function symbol and since the goal is not labeled with any clause, we apply Concrete
Evaluation Rule 3.2 and evaluate sqinit to

s1 :=
〈

fac(1,Res)fac(X1,Y1) :- >(X1,0),!1,fac(−(X1,1),Y 11),is(Y1,∗(Y 11,X1)) |

fac(1,Res)fac(X1,Y1) :- =:=(X1,0),is(Y1,1) | ?1

〉
Now the first term of the first goal is a labeled term, which we can evaluate using either
Concrete Evaluation Rule 3.3 or Concrete Evaluation Rule 3.4. Since fac(X1, Y1) and
fac(1,Res) unify with the most general unifier σ1 : X1 7→ 1, Y1 7→ Res1,Res 7→ Res1, we
can apply Concrete Evaluation Rule 3.3 and receive the state:

s2 := 〈>(1, 0), !1, fac(−(1, 1), Y 11), is(Res1, ∗(Y 11, 1)) |

fac(1,Res)fac(X1,Y1) :- =:=(X1,0),is(Y1,1) | ?1

〉
Concrete Evaluation Rule 3.12 Arithmetic Evaluation Rule (Failure)

IsFail
〈(is(t1, t2), T) | G〉

〈G〉

Where: evalE(t2) 6= ⊥
mgu(t1, evalE(t2)) = ⊥

27

3. Concrete Semantics

At this point the first term of the first goal of s2 is a built-in predicate, namely the
larger-than predicate. Since evalC(>(1, 0)) = evalE(1) > evalE(0) = 1 > 0 ≡ true
holds, we can use Concrete Evaluation Rule 3.8 and evaluate s2 to:

s3 := 〈!1, fac(−(1, 1), Y 11), is(Res1, ∗(Y 11, 1)) |

fac(1,Res)fac(X1,Y1) :- =:=(X1,0),is(Y1,1) | ?1

〉
We now have to evaluate the cut. The only goal between the current one and the end-of-
scope marker ?1 is fac(1,Res)fac(X1,Y1) :- =:=(X1,0),is(Y1,1), which is removed by evaluating
cut. As mentioned before, we do not remove the end-of-scope marker, but keep it in
order to handle further cuts. Using Concrete Evaluation Rule 3.5, we evaluate s3 to:

s4 := 〈fac(−(1, 1), Y 11), is(Res1, ∗(Y 11, 1)) | ?1〉

The next step consists of the evaluation of a user-defined predicate again. For this, we
use Concrete Evaluation Rule 3.2 and pick the number 2 as the unused index to create
two goals. These are labeled with their respective rules. Thus, we receive the state:

s5 := 〈fac(−(1, 1), Y 11),

is(Res1, ∗(Y 11, 1))fac(X2,Y2) :- >(X2,0),!2,fac(−(X2,1),Y 12),is(Y2,∗(Y 12,X2)) |

fac(−(1, 1), Y 11), is(Res1, ∗(Y 11, 1))fac(X2,Y2) :- =:=(X2,0),is(Y2,1) | ?2 | ?1

〉
We see that fac(X2, Y2) and fac(−(1, 1), Y 11) unify with the unifier

σ2 : X2 7→ −(1, 1), Y2 7→ Y3, Y 11 7→ Y3,

which we apply to the body of the rule and the remaining terms. We apply rule Concrete
Evaluation Rule 3.3 to receive:

s6 := 〈>(−(1, 1), 0),

!2, fac(−(−(1, 1), 1), Y 12), is(Y3, ∗(Y 12,−(1, 1))), is(Res1, ∗(Y3, 1)) |

fac(−(1, 1), Y 11), is(Res1, ∗(Y 11, 1))fac(X2,Y2) :- =:=(X2,0),is(Y2,1) | ?2 | ?1

〉
Now, since 1−1 > 0 is obviously equivalent to false, we apply Concrete Evaluation Rule
3.9 and abandon the current goal to continue with the remaining ones. This leads to the
state:

s7 :=
〈

fac(−(1, 1), Y 11), is(Res1, ∗(Y 11, 1))fac(X2,Y2) :- =:=(X2,0),is(Y2,1) | ?2 | ?1

〉
At this point, we check whether the chosen rule is applicable to the first term of the
first goal. We see that fac(X2, Y2) and fac(−(1, 1), Y 11) unify with the same most
general unifier σ2 as before. Again, we use Concrete Evaluation Rule 3.3 and Concrete
Evaluation Rule 3.8 and receive:

s8 := 〈=:=(−(1, 1), 0), is(Y3, 1), is(Res1, ∗(Y3, 1)) | ?2 | ?1〉

28

3.3. Equivalence to ISO Semantics

and:
s9 := 〈is(Y 11, 1), is(Res1, ∗(Y 11, 1)) | ?2 | ?1〉

In the next step, we evaluate the is-predicate for the first time. Since Y 11 and 1 unify
with σ3 : Y 11 7→ 1, we can apply Concrete Evaluation Rule 3.11 and arrive at:

s10 := 〈is(Res1, ∗(1, 1)) | ?2 | ?1〉

We apply the same rule again and unify Res1 with the result of evaluating ∗(1, 1), that
is, with the unifier σ4 : Res1 7→ 1. Since this was the last term in this goal, we end up
with the empty goal in:

s10 := 〈� | ?2 | ?1〉
We can now apply Concrete Evaluation Rule 3.1 and, subsequently, Concrete Evaluation
Rule 3.6 twice and receive the sequence of states:

s11 := 〈?2 | ?1〉

s12 := 〈?1〉
s13 := 〈ε〉

At this point we can apply no more rules and thus, the computation has finished. N

Since the concrete evaluation rules mirror the inference algorithm, which is determin-
istic, they are deterministic as well.

Lemma 3.3 (Deterministic concrete semantics). Let s be a concrete state. If there exists
a concrete evaluation rule r that is applicable to s, then no other rule r′ 6= r is applicable
to s. �

Proof. For the complete proof, please refer to [SESK+11].

3.3. Equivalence to ISO Semantics

The semantics presented in the previous section are equivalent to those of ISO-Prolog
for the properties that we are interested in, which are termination-behavior, complex-
ity, and the reachability of program errors. These properties are shown in [SESK+11,
Theorem 3]. We merely state these properties separately here and refer to the original
publication for the proofs.

In order to properly formulate these properties, we use the state transition relation
→ and its transitive closure →∗. We also use the notion of a final state, which is a state
from which the execution cannot continue.

Definition 3.9 (Concrete state transition relation, final state). Let s and s′ be concrete
states. We write s → s′ if there exists a concrete evaluation rule whose application
transforms s into s′. We furthermore write s →∗ s′ if there is a sequence of concrete
states s1, . . . , sn with n ≥ 1, such that s = s1, s′ = sn and si → si+1 for all i ∈ [1;n− 1].
If n
 1, we write s→+ s′.

We say that s is a final state if there exists no state s′ such that s→ s′ holds true. �

29

3. Concrete Semantics

Lemma 3.4 (Equivalence of state-based semantics and ISO-semantics). Let P be a
program and let q be a term. For any state s it holds true that sqinit →∗ s if and only if
the execution of q according to the ISO-semantics leads to a tree corresponding to s. �

Lemma 3.5 (Equivalence of state-based semantics and ISO-semantics (termination)).
Let P be a program and let q be a term. There exists a final state s such that sqinit →∗ s
if and only if the execution of q according to the ISO-semantics terminates. �

Lemma 3.6 (Equivalence of state-based semantics and ISO-semantics (complexity)).
Let P be a program and let s be a final state of the program with sqinit →∗ s. Furthermore,
let s1, . . . , sl be the intermediate states that occur during the evaluation of sqinit to s.
Finally, let k be the length of the execution of q according to the ISO-semantics. Then
l ∈ Θ(k) holds true. �

Proof. The proofs for Lemma 3.4, Lemma 3.5, and Lemma 3.6 can be found in [SESK+11,
Appendix C].

30

4. Abstract Semantics

The goal of this section is to develop an abstract semantics on the basis of the concrete
state-based semantics from the previous section. This abstract semantics is based on
work presented in [GSSK+12].

In Section 4.1 we define the domain that we use for our abstract semantics. Section
4.2 contains an overview over the general idea of the abstract interpretation. We present
rules that allow us to evaluate these abstract states in Section 4.3 and Section 4.4. The
former section contains evaluation rules previously published in [GSSK+12], whereas
we develop new rules in the latter section. In Section 4.5 we prove that this abstract
semantics is both deterministic and sound.

4.1. The Abstract Domain

In this section we define the abstract states that we are going to evaluate with our
semantics. We base our definition on the definition of abstract states in [GSSK+12].
Since our focus lies on the abstract evaluation of arithmetic predicates, we first define
so-called arithmetic states in Section 4.1.1. We then define abstract states in Section
4.1.2, which use arithmetic states as one of their components.

Our goal in this section is to define a representation of an infinite set of concrete
states. For this, we use two kinds of variables, namely program- and term variables. All
variables that occurred so far in this thesis are program variables, since they occur in
programs. Term variables, on the other hand, occur in positions where we do not know
the subterm precisely.

This notion will be defined formally in Section 4.1.2. For now, it suffices to note that
we use disjoint sets of program variables V and sets of term variables T , where the term
variables are those that are of interest for our abstraction.

4.1.1. Arithmetic States

We use term variables to denote positions for which we do not know the term precisely.
However, we want to be able to retain some precision when evaluating arithmetic com-
parisons and evaluations. To this end we use arithmetic states, which store knowledge
about the result of the arithmetic expressions that the variables represent.

The general idea for these states is to hold a set of assignments of numeric values to
variables. We will see how we use these states to improve the precision of our abstraction
in Section 4.1.2.

31

4. Abstract Semantics

Definition 4.1 (Arithmetic State). Let T be a set of variables. We define the set of all
assignments of integers to these variables as

ArithAssignmentsT := {f | f : T → Z}

We call any subset A of ArithAssignments an arithmetic state. �

Example 4.1 (Arithmetic state). We pick the set of variables T such that {X,Y } ⊆ T
holds true. The set

A := {σ | σ(X) > 0, σ(Y) = σ(X)− 1}

is an arithmetic state that contains infinitely many assignments. N

Since arithmetic states do not need to be finite and may be very large, we need a
concise notation for them. We choose to denote an arithmetic state by a set of relations.
The arithmetic state corresponding to a set of relations is the set of all those assignments
that satisfy all the relations in the set.

Definition 4.2 (Set notation of arithmetic states). Let R be a finite set of relations over
the integers and over a set of variables T . We define the arithmetic state associated
with R as

AR := {σ | ∀r ∈ R. rσ is a tautology}

�

Example 4.2 (Set notation of arithmetic states). We pick T and A as in Example 4.1.
If we furthermore pick

R := {X > 0, Y = X − 1},

then we have A = AR. N

Quite often we also need the statement that one arithmetic state is a subset of another.
In a lot of cases, the latter state is defined by a single relation. We use the symbol |=
for this.

Definition 4.3 (Modeling of relations). Let T be some set of variables, let A be some
arithmetic state and let r be some relation over the integers and T . We say that A
models r if and only if A ⊆ A{r} holds true. If this statement does not hold true, we
say that A does not model r. We write A |= r and A 6|= r, respectively. �

This notation allows us to concisely denote that some relation is “implied” by an
arithmetic state. It does, however, have the counterintuitive property that there exist
relations for which neither the relation nor its negation are modeled by the arithmetic
state.

Example 4.3 (Modeling of relations). We pick T and A to be the set of variables
and the arithmetic state from Example 4.1, respectively. Then both A |= X > 0 and
A 6|= X ≤ 0 holds true. Furthermore, both of A 6|= Y ≤ 0 and A 6|= Y > 0 hold true. N

32

4.1. The Abstract Domain

In the following sections, we often use the representations of relations as Prolog
terms and as mathematical objects. In order to simplify reading of this thesis, we do not
differentiate between these two notations. We also use the operator ¬ on relations in
order to negate the relation. This is well-defined as the set of relations {=, 6=, <,>,≤,≥}
is closed under negation.

Example 4.4 (Relations as terms and mathematical objects, negation). The rela-
tion X = Y can also be written as the term =:=(X,Y). We write ¬(X = Y) and
¬(=:=(X,Y)) to denote the same thing, namely the relation X 6= Y or the term
=/=(X,Y). N

One useful observation to make is the fact that the set-notation behaves similarly to
traditional sets. More precisely, the following lemma holds true, which allows us to keep
unnecessary updates to arithmetic states to a minimum.

Lemma 4.1. Let A be an arithmetic state and let r be a relation. Then the statement

A |= r implies A ∩A{r} = A

holds true. �

Proof. We first take the set-notation ofA{r} apart and see thatA∩A{r} is the same asA∩
{σ | rσ is a tautology}. We proceed to show that A is a subset of {σ | rσ is a tautology}.
For this, let σ ∈ A. Since A |= r holds true by assumption, we know that for all σ ∈ A, it
holds true that rσ is a tautology. Thus σ ∈ A{r} holds true. Hence, we have A{r} ⊆ A.
Thus, both A ∩ {σ | rσ is a tautology} = A and A ∩A{r} = A hold true.

Using this notion of arithmetic states, we now define abstract program states.

4.1.2. Abstract Program States

After having defined arithmetic states in the previous section, we now use them as a
component of abstract states. The aim of this section is to define abstract states, where
each abstract state represents a potentially infinite set of concrete states.

An abstract state consists mainly of two components. The first component is a se-
quence of goals, which is very similar to a concrete state. In contrast to the concrete
state, whose goals only contained a single kind of variables, this sequence may also con-
tain term variables. These term variables may be replaced by terms containing only
program variables to receive a concrete state that is represented by the abstract state.
Since this idea on its own would result in a very coarse abstraction, we constrain the ad-
missible substitutions using the second part of the abstract state, the so-called knowledge
base, which we discuss in the latter part of this section.

We call the kind of variables used so far “program variables” in order to distinguish
them from term variables. To aid readability, we write program variables as X and term
variables as X in the remainder of this thesis. Similarly to program variables, we denote
the term variables that occur in a term t, a sequence of terms T , a goal g, or a sequence
of goals G as T (t), T (T), T (g), and T (G), respectively.

33

4. Abstract Semantics

Example 4.5 (Program variables and term variables). Consider the sequence of goals

〈fac(−(X, 1), Y1), is(Y, ∗(Y1, X))〉 ,

which contains the program variables Y and Y1 as well as the term variable X. This
sequence of goals represents, for example, the concrete state

〈fac(−(1, 1), Y1), is(Y, ∗(Y1, 1))〉 ,

since both occurrences of the single term variable X have been replaced with the term
1.

It does not, however, represent

〈fac(−(1, 1), Y1), is(Y, ∗(Y1, X))〉 ,

since this sequence still contains the term variable X. It also does not represent

〈fac(−(−(Z, 1), 1), Y1), is(Y, ∗(Y1,−(Z, 1)))〉 ,

in which both occurrences of X have been replaced with the term −(Z, 1), but the new
terms still contain the term variable Z. N

This notion of term variables would theoretically suffice to define abstract states.
However, this abstraction would be too coarse for any nontrivial analysis. Thus, we
keep track of additional information to constrain the possible instantiations of the term
variables.

More precisely, we keep track of four major restrictions on the instantiations: ground-
ness, non-unifiability, instantiation with arithmetic expressions and the arithmetic state.

The first major property of interest is whether or not a term may contain any variables.
A term which does not contain any variables is called a ground term.

Definition 4.4 (Groundness). A term t is called ground if V(t) ∪ T (t) = ∅ holds
true. �

Our definition of an abstract state contains a set of those term variables which may
only be instantiated to ground terms.

In addition to that, we also store pairs of terms that may not be instantiated to unify-
ing terms. Furthermore, we keep track of those variables that may only be instantiated
to arithmetic expressions whose evaluation does not lead to an error. Finally, we store
the relations between the variables that we know to hold true in an arithmetic state. We
combine all of these elements into an abstract state.

Definition 4.5 (Abstract state, ground set, nonunifying pairs, arithmetic variables).
Let Σ be some signature and let V and T be two disjoint, countable and infinite sets
of variables. Furthermore, let P be some program over Σ and V. We define the set of
abstract states:

AbstractStatesΣ,V,T :=

ConcreteStatesP,V∪T × 2T × 2(TermsΣ\(V∪T),V∪T ×TermsΣ\(V∪T),V∪T)×
2TermsΣ\(V∪T),V∪T × 2ArithAssignmentsT

34

4.1. The Abstract Domain

We call an element s = (S,G,U , E ,A) of AbstractStatesΣ,V,T an abstract state of
P over T . We call S,G,U , E ,A the state form, ground set, nonunifying pairs,
arithmetic variables and the arithmetic state of s, respectively. We also call G,U , E ,
and A the knowledge base of s. �

The purpose of an abstract state is to represent an infinite set of concrete states. For
this, the state form of an abstract state contains term variables, which may be replaced
by terms without term variables to receive a concrete state. The replacements that may
be applied to the state form are constrained by the knowledge base of the abstract state.

We now formalize these constraints using the notion of conforming substitutions. The
idea is that such a substitution is conforming to an abstract state if it replaces all term
variables from the state form and respects the restrictions imposed by the knowledge
base of the state.

Definition 4.6 (Conforming substitutions, representation of concrete states, concretiza-
tions of abstract states). Let Σ be a signature and let V and T be sets of program- and
term variables, respectively. Furthermore, let P be a program over Σ and V. Let
s = (S,G,U , E ,A) be an abstract state of P over T and let σ : T → TermsΣ\(V∪T),V be
a substitution. We say that σ conforms to s if all of the following conditions hold:

• T (Sσ) = ∅
• For all X in G, V(Xσ) = ∅
• For all pairs of terms t1, t2 in U , mgu(t1σ, t2σ) = ⊥
• For all X in E , evalE(Xσ) 6= ⊥
• (evalE ◦ σ)

∣∣
T ∈ A

We say that σ conforms to (G,U , E ,A) to denote that the latter four conditions hold
true.

If σ conforms to s, we say that s represents the concrete state Sσ. Finally, we define:

Conc(s) := {Sσ | s = (S,G,U , E ,A), σ conforms to s}

We call the concrete states in Conc(s) the concretizations of s. �

Example 4.6 (Abstract state and concretizations). Consider the abstract state

s = (〈fac(−(X, 1), Y1), is(Y, ∗(Y1, X))〉 , {X}, ∅, {X},A{X>0})

This abstract state has the state form 〈fac(−(X, 1), Y1), is(Y, ∗(Y1, X))〉, its ground set
contains the single term variable X, it has the arithmetic variable X and the arithmetic
state A{X>0}. It contains no nonunifying pairs.

We define the substitution σ : X 7→ 1. It replaces the single arithmetic variable X
by 1. Hence Xσ is ground and evalE(1) = 1 6= ⊥ holds true. Also, the single relation
X > 0 in A is a tautology after application of σ:

σ(X > 0) = 1 > 0 ≡ true

Hence, σ conforms to s. Thus,

s := 〈fac(−(X, 1), Y1), is(Y, ∗(Y1, X))〉σ = 〈fac(−(1, 1), Y1), is(Y, ∗(Y1, 1))〉

is represented by s and s ∈ Conc(s) holds true. N

35

4. Abstract Semantics

4.2. Structure of Abstract Evaluation

Our goal in the following two sections is to define a semantics that allows us to directly
evaluate abstract states. To this end, we are going to define rules that provide a sound
abstraction of the concrete execution relation.

The main difference between the concrete and the abstract evaluation rules is the
number of successors a single state has. The concrete semantics is linear in the sense
that each concrete state has at most one successor state. This is due to the deterministic
behavior of the ISO-Prolog semantics. In the abstract state, however, this is not
possible.

Example 4.7. Consider the abstract state

s := (〈>(X, 0) | =:=(X, 0) | ?1〉 , ∅, ∅, ∅,A∅)

that contains the single term variable X. Two concrete states that are represented by
this abstract state are

s1 = 〈>(1, 0) | =:=(1, 0) | ?1〉
s2 = 〈>(−1, 0) | =:=(−1, 0) | ?1〉

Their respective concrete successor states s′1 and s′2 are

s′1 = 〈� | =:=(1, 0) | ?1〉
s′2 = 〈=:=(−1, 0) | ?1〉

However, there exists no single abstract state s′ such that both s′1 and s′2 are members
of Conc(s′). N

This example shows that we need to be able to have multiple successors of a single
abstract state. For this, we use rules of the form

s
s1 . . . sn

,

for some n ∈ N, where s and s1 through sn are abstract states. The states s1 through
sn are the successor states of s.

Similarly to the concrete rules, we define these rules such that their application is
guided by the syntactical form of the first term of the first goal of the abstract state that
is evaluated.

The abstract inference starts, similarly to the concrete one, with an initial state. This
starting state is very simple to construct, as we have no knowledge about any properties
of the variables so far.

The only major difference to the construction of a concrete starting state from a term
is that we now allow term variables in the initial term. This enables us to specify starting
states that represent an infinite number of concrete states. We call such an initial term
with term variables a query.

36

4.3. Evaluation of Logic Programs

Definition 4.7 (Query, initial state of abstract evaluation). Let Σ be a signature, let
V and T be disjoint sets of variables and let q be a term over Σ and V ∪ T . We call q
the query. We define the initial state sqinit of the abstract evaluation of q as

sqinit := (〈q [(V ∪ T) 7→ (V ∪ T)0]〉 , ∅, ∅, ∅,A∅),

where (V ∪ T) 7→ (V ∪ T)0 denotes the function mapping each member X of V ∪ T to
X0. �

We define rules that allow us to abstractly evaluate logic programs with cut in the
following section. Afterwards, we consider arithmetic programs in Section 4.4.

4.3. Evaluation of Logic Programs

In this section we are going to define abstract evaluation rules that handle the evalua-
tion of user-defined terms and the cut. These rules are taken from [GSSK+12], where
they were introduced as part of a termination analysis. We only reproduce those rules
that contribute to the abstract semantics in this section. Those rules that were used
specifically for termination analysis are presented in Section 5.1 (Termination Graphs).
Our own contribution is presented in Section 4.4, where we define new rules for the
evaluation of arithmetic comparisons and the is-symbol.

Similarly to the concrete case, the simplest case is that in which the first goal of the
abstract state is the empty goal. In that case, all concretizations of the abstract state
also have the empty goal as their first goal. Since the only possible rule to apply in that
case is Concrete Evaluation Rule 3.1, which removes the first goal from the state, we
can do the same in the abstract state. This is formalized in Abstract Evaluation Rule
4.1. Since the removal of the empty goal does not have any influence on the knowledge
about the variables in the state, we do not change the knowledge base of the abstract
state.

Abstract Evaluation Rule 4.1 Success Rule

Success
(〈� | G〉 ,G,U , E ,A)

(〈G〉 ,G,U , E ,A)

The next three rules are used to evaluate user-defined function symbols. We use the
same idea for evaluation of these predicates as we did in the concrete case. This means
we first use Abstract Evaluation Rule 4.2 to copy the goals and label each copy with
the rule that we are going to try to apply. For this we use the same helper-function
SliceP (t) as we did in the concrete case, which yields an ordered sequence of the rules
in the program P that have the same function symbol at their head as t has.

The idea for the evaluation of such a labeled goal is to check whether or not the first
term of the goal unifies with the head of the rule that the goal is labeled with. If this is
the case, we apply the rule and continue with the goal. Otherwise, we abandon the goal

37

4. Abstract Semantics

Abstract Evaluation Rule 4.2 Case Rule

Case
(〈(t, T) | G〉 ,G,U , E ,A)(〈

(t, T)c
′
1 | . . . | (t, T)c

′
n | ?m | G

〉
,G,U , E ,A

)
Where: SliceP (t) = c1, . . . , cn

c′i := ci [(V ∪ T) 7→ (V ∪ T)m] [! 7→!m]
m ∈ N does not occur as an index in t, T , or G
t = f(. . .) and f 6∈ {=:=,=\=, <,>,=<,>=, is}

and continue with the next one. This is the same procedure that we used in the concrete
case. However, the question of whether or not two terms unify does not necessarily have
a simple answer of true or false in the presence of term variables.

Example 4.8 (Unification with term variables). Consider the two terms t1 = f(X) and
t2 = f(g), where X is a term variable, and the concretization σ1 : X 7→ g. Then we
have t1σ1 = f(g), which obviously unifies with t2 with the identity-function as the most
general unifier.

Now consider the concretization σ2 : X 7→ h. We then have t1σ2 = f(h), which does
not unify with t2.

Both σ1 and σ2 conform to the knowledge base (∅, ∅, ∅,A∅). Thus, there exist some
concretizations of the abstract state

s := (〈f(X)〉 , ∅, ∅, ∅,A∅)

that unify with t2 and some that do not. N

Due to this, we need to create two successor states if we are not sure whether or not
the first term of a labeled goal unifies with the head of the rule. This construction is
formalized in Abstract Evaluation Rule 4.3.

It may be possible for us to infer that no concretization γ exists that allows tγ and
h to unify. This is the case, for example, if the pair (t, h) is a member of the set of
nonunifying pairs of terms. In that case, we only need to produce a single successor
state, namely that in which the two terms do not unify and the goal is abandoned. To
do so, we use Abstract Evaluation Rule 4.4. Note that we do not add the pair (t, h) to
U in this case, as this information is already stored in the abstract state.

Using the previously defined abstract evaluation rules, we can abstractly evaluate pure
logic programs. We now reproduce rules from [GSSK+12] that allow us to evaluate the
cut in abstract states.

The adaptation of the cut- and failure rules from the concrete semantics is very
straightforward. Since neither ! nor ? can appear as subterms, but only as terms on
their own, they can never be represented by a term variable. Hence, all cuts and end-of-
scope markers that appear in any concretization of an abstract state also appear in the
abstract state itself. Thus, we can simply evaluate them similarly to the concrete case.
We do so in Abstract Evaluation Rule 4.5 and Abstract Evaluation Rule 4.6.

38

4.3. Evaluation of Logic Programs

Abstract Evaluation Rule 4.3 Evaluation Rule

Eval

(〈
(t, T)h :- B | G

〉
,G,U , E ,A

)
(〈(Bσ, Tσ) | G′〉 ,G′,U ′, E ′,A′) (〈G〉 ,G,U ′′, E ,A)

Where: σ := mgu(t, h) 6= ⊥
G′ := G after pointwise application of (t1, . . . , tn) 7→

(
t1σ
∣∣
G , . . . , tnσ

∣∣
G

)
G′ := T (Range(σ

∣∣
G))

U ′ := Uσ
∣∣
G

E ′ := Eσ
∣∣
G

A′ := Aσ
∣∣
G

U ′′ := U ∪ {(t, h)}
∃γ conforming to (〈(t, T) | G〉 ,G,U , E ,A) with mgu(tγ, h) 6= ⊥

Abstract Evaluation Rule 4.4 Backtracking Rule

Backtrack

(〈
(t, T)h :- B | G

〉
,G,U , E ,A

)
(〈G〉 ,G,U , E ,A)

Where: @γ conforming to (〈(t, T) | G〉 ,G,U , E ,A) with mgu(tγ, h) 6= ⊥

We now use these abstract semantics to represent infinitely many possible executions
of Program 2.1. This program is reprinted as Program 4.1 for the sake of readability.

Example 4.9 (Abstract Evaluation of Program 4.1 on ancestor(X,Y)). Consider Pro-
gram 4.1, which we call P , and the query q := ancestor(X,Y), where X and Y are term
variables. We abstractly evaluate q on P . The initial fragment of the infinite tree of
abstract states is shown in Figure 4.1.

According to Definition 4.7, the initial state of this inference is

sqinit := (〈ancestor(X,Y)〉 , ∅, ∅, ∅,A∅),

which is present in the graph as node A. Since the function symbol ancestor is user-
defined, the only applicable rule is Abstract Evaluation Rule 4.2. We apply this rule
and receive state B. This application is the same as in the concrete case.

Abstract Evaluation Rule 4.5 Cut Rule

Cut
(〈(!m, T) | G | ?m | G′〉 ,G,U , E ,A)

(〈T | ?m | G′〉 ,G,U , E ,A)

Where: G does not contain ?m

39

4. Abstract Semantics

Abstract Evaluation Rule 4.6 Failure Rule

Failure
(〈?m | G〉 ,G,U , E ,A)

(〈G〉 ,G,U , E ,A)

Program 4.1 Family relationships (reprint of Program 2.1 on page 8)

female(alice). male(bob).

female(claire). female(diane).

father(bob, alice). mother(claire, bob).

mother(diane, claire).

ancestor(X, Y) :- mother(X, Y).
ancestor(X, Y) :- ancestor(X, Z), mother(Z, Y).

When we try to evaluate node B, we see that ancestor(X,Y) and ancestor(X, Y) unify
in any case. However, there does not exist a rule that produces only a successor state in
which the unification succeeds. Hence, we have to produce one successor state for both
the case in which the unification succeeds and the one in which it does not. We apply
Abstract Evaluation Rule 4.3 and receive the two successor states C and D.

We do not show the remaining evaluation of node C, as we would just apply Abstract
Evaluation Rule 4.2 again here. Eventually, we would finish evaluating the first goal of
this node, and continue with the second one. Here, we would again have one abstract
successor state in which ancestor(X,Y) and ancestor(X, Y) unify, which would be very
similar to state A. Thus, there would be an infinite sequence of nodes. This sequence
corresponds to the infinite evaluation of the query as shown in Figure 2.1 on page 11.

While node C represents the case in which the unification succeeded, node D repre-
sents the case in which the unification failed. Note that the knowledge base of node
D has changed in comparison to that of node B, as we added the nonunifying pair
(ancestor(X,Y), ancestor(X, Y)). Since we now have this knowledge in our knowledge
base, we do not need to perform a case analysis for the evaluation of node D. Instead,
we only need to consider the case in which ancestor(X,Y) and ancestor(X, Y) do not
unify, which allows us to abandon the current goal and continue with the only remaining
one, namely ?1.

Note that we reached an unsatisfiable knowledge base in node D, meaning that the
abstract state

(
〈

ancestor(X,Y)ancestor(X,Y) :- ancestor(X,Z),ancestor(Z,Y) | ?1

〉
,

∅, {(ancestor(X,Y), ancestor(X, Y))}, ∅,A∅)

does not represent any concrete states. However, the rules of the abstract allow for
further evaluation of nodes D and E.

We can evaluate node E using Abstract Evaluation Rule 4.6, at which point we end
up with an empty state form. At this point the evaluation is finished. N

40

4.3. Evaluation of Logic Programs

(〈ancestor(X,Y)〉 , ∅, ∅, ∅,A∅)

(
〈
ancestor(X,Y)ancestor(X,Y) :- mother(X,Y) |

ancestor(X,Y)ancestor(X,Y) :- ancestor(X,Z),ancestor(Z,Y) | ?1

〉
,

∅, ∅, ∅,A∅)

(〈mother(X1, Y1) |
ancestor(X,Y)ancestor(X,Y) :- ancestor(X,Z),ancestor(Z,Y) | ?1

〉
,

∅, ∅, ∅,A∅)

. . .

(
〈
ancestor(X,Y)ancestor(X,Y) :- ancestor(X,Z),ancestor(Z,Y) |
?1〉 , ∅, {(ancestor(X,Y), ancestor(X, Y))}, ∅,A∅)

(〈?1〉 , ∅, {(ancestor(X,Y), ancestor(X, Y))}, ∅,A∅)

(〈ε〉 , ∅, {(ancestor(X,Y), ancestor(X, Y))}, ∅,A∅)

A

B

C

D

E

F

Figure 4.1.: Abstract evaluation of ancestor(X,Y) on Program 4.1

In the previous example we have seen that we can indeed model the infinite evaluation
of the query that we have shown in Example 2.7 with our abstract semantics. More
importantly, we are able to model any concrete evaluation using this abstract semantics.
This property of an abstract semantics is usually known as soundness, meaning that the
abstract evaluation does not “lose” any states. More specifically, our abstract semantics
has the property that every rule produces abstract successor states that “cover” all the
possible concrete successor states of the original abstract state.

Definition 4.8 (Soundness of abstract interpretation). Let

r := s
s1 . . . sn

be an abstract evaluation rule. We say that r is sound iff the following property holds:

For all s ∈ Conc(s), s′ ∈ ConcreteStates it holds true that

s→ s′ implies that there exists some i ∈ [1;n] such that s′ ∈ Conc(si)

41

4. Abstract Semantics

�

The soundness of these rules has been shown in [GSSK+12]. We merely state this fact
here and point to that work for the full proof.

Lemma 4.2 (Soundness of abstract interpretation (Logic)). The abstract evaluation
rules 4.1 through 4.6 are sound. �

Proof. The full proof of this can be found in [GSSK+12, Appendix A].

4.4. Evaluation of Arithmetic Logic Programs

In the previous section, we have reproduced prior work published in [GSSK+12]. The
abstract evaluation rules in that work can be used to abstractly evaluate logic programs
with cuts. The authors do, however, not provide rules to handle the built-in arithmetic
predicates and functions of Prolog used for integer arithmetic. We define such rules
in this section.

Since there is the possibility for every arithmetic evaluation and comparison to lead
to an error state, we first develop a sound heuristic to check for the possibility of such
an error in Section 4.4.1. In Section 4.4.2 we then define rules for the evaluation of
arithmetic comparisons. Finally, we define rules to handle the abstract evaluation of the
is-predicate in Section 4.4.3.

4.4.1. Safe Evaluation of Arithmetic Expressions

The evaluation of an arithmetic expression can introduce implementation-defined behav-
ior into the inference. In our semantics, we treat this behavior as an error. For any term
without term variables, it is easy to decide whether or not the evaluation of the term
results in an error by checking whether or not evalE(t) = ⊥ holds true. In the presence
of term variables, however, this check is not so simple anymore and does not even lead
to a simple result of true or false.

Example 4.10 (Unsafe evaluation with term variables). Consider the abstract state

s := (〈//(3, X)〉 , ∅, ∅, ∅,A∅) ,

where X is a term variable. The conforming substitution σ1 := X 7→ 1 concretizes
//(3, X) to an expression whose evaluation results in the natural number 3. Another
substitution, for example σ2 := X 7→ f concretizes //(3, X) to a term whose evaluation
results in an error, as f is not part of the predefined arithmetic functions. The final
substitution σ3 := X 7→ 0 also leads to the evaluation of //(3, X)σ3 resulting in an error,
as division by zero is not defined. N

We thus see that, depending on the position and the context of the term variables,
we may be certain that the evaluation of some term leads to an error, or we may be
certain that it does not. In order to decide this precisely, we require a set of term

42

4.4. Evaluation of Arithmetic Logic Programs

variables E that we know not to be instantiated to any terms whose evaluation results
in an error, as well as an arithmetic state A that allows us to detect potential divisions
by zero. These two components are part of the knowledge base of abstract states,
so we can easily use them during abstract evaluation. We define the helper function
safeE,A : Terms → {true, false,maybe} to check whether or not a term may evaluate to
an error.

This safety heuristic is applied recursively to the operands of built-in arithmetic func-
tions. We use the operator ⊗ to combine the results of the heuristic on the arguments
to the functions.

Definition 4.9 (Safety heuristic). Let ⊗ be a binary operator on {true, false,maybe},
defined as follows:

true ⊗ true = true true ⊗maybe = maybe true ⊗ false = false

maybe ⊗ true = maybe maybe ⊗maybe = maybe maybe ⊗ false = false

false ⊗ true = false false ⊗maybe = false false ⊗ false = false

Let E be a set of variables and let A be an arithmetic state. We define safeE,A : Terms →
{true, false,maybe} inductively over the structure of a term. The function is defined on
atoms as follows:

safeE,A(n) := true if n ∈ Z
safeE,A(X) := false if X is a program variable

safeE,A(X) := true if X is a term variable and X ∈ E
safeE,A(X) := maybe if X is a term variable and X 6∈ E

It is defined for compound terms as follows:

safeE,A(op(t′)) := safeE,A(t′) if op ∈ {abs, sign,−}
safeE,A(op(t′1, t

′
2)) := safeE,A(t′1)⊗ safeE,A(t′2) if op ∈ {+,−, ∗, ∗∗}

safeE,A(op(t′1, t
′
2)) := safeE,A(t′1)⊗ safeE,A(t′2)

if op ∈ {//,mod , rem}
and A |= t′2 6= 0

safeE,A(op(t′1, t
′
2)) := false

if op ∈ {//,mod , rem}
and A |= t′2 = 0

safeE,A(op(t′1, t
′
2)) := maybe

if op ∈ {//,mod , rem}
and A 6|= t′2 = 0
and A 6|= t′2 6= 0

safeE,A(t) := false otherwise

�

This function yields true for any term that will definitely not lead to an error during
evaluation and false for any term that will inevitably lead to an error during evaluation.
It returns maybe for all other terms. We test this function on our previous example.

43

4. Abstract Semantics

Example 4.11 (Application of safeE,A to Example 4.10). Let t := //(3, X), where X
is a term variable. We first consider E1 := {X} and the arithmetic state A1 := A{X 6=0}.
In this case we have

safeE1,A1
(t) = safeE1,A1

(3)⊗ safeE1,A1
(X) = true ⊗ true = true,

since A1 |= X 6= 0 and X ∈ E1.
We now pick E2 = ∅. The function then yields

safeE2,A1
(t) = safeE2,A1

(3)⊗ safeE2,A1
(X) = true ⊗maybe = maybe

As a final example we choose A2 := A{X=0}. In this case safeE2,A2
(t) evaluates to

safeE2,A2
(t) = false,

since division by zero leads to an error. N

We see that the function works as intended on this example. In fact, we show that
this function works as intended on all terms in the following lemma.

Lemma 4.3 (Soundness of safety heuristic). Let s = (〈(t, T) | G〉 ,G,U , E ,A) be an
abstract state. Then the following two implications hold true:

safeE,A(t) = true implies that

for all concretizations γ conforming to s it holds true that evalE(tγ) 6= ⊥
(4.1)

safeE,A(t) = false implies that

for all concretizations γ conforming to s it holds true that evalE(tγ) = ⊥
(4.2)

�

Proof. We show both statements separately and begin with statement 4.1.

Proof of statement 4.1

Let s = (〈(t, T) | G〉 ,G,U , E ,A) be some abstract state and let γ be some concretization
conforming to s. Assume safeE,A(t) = true. We show evalE(tγ) 6= ⊥ by structural
induction over t.

Induction base: t has no arguments Since we assumed that safeE,A(t) = true holds
true, there are two cases to consider: The term t may be an integer, or it may be a term
variable. The cases that t is a program variable or some user-defined constant would
contradict our assumption.

44

4.4. Evaluation of Arithmetic Logic Programs

Case 1: t = n is an integer In this case, evalE(t) = n holds true. Since n is a natural
number, evalE(t) 6= ⊥, whence the statement holds true.

Case 2: t = X is a term variable In this case, due to our assumption, X ∈ E holds
true. Since γ conforms to s, we know by the definition of conforming substitutions that
evalT (Xγ) 6= ⊥ holds true.

Induction step: t has arguments Let t = op(t1, . . . , tn) and assume that safeE,A(ti) =
true implies evalE(tiγ) 6= ⊥ for all 1 ≤ i ≤ n. Since we have safeE,A(t) = true by as-
sumption, we know that n ≤ 2, otherwise this assumption would be false. We distinguish
two cases.

Case 1: t = op(t′) Since our assumption was that safeE,A(t) = true holds true, we
know that op ∈ {abs, sign,−} and that safeE,A(t′) = true. We apply the induction
hypothesis and have evalE(t′γ) = n 6= ⊥. We can then see that evalE(tγ) = op(n),
which is well-defined in all three possible cases for op. Hence, we have evalE(tγ) 6= ⊥.

Case 2: t = op(t′1, t
′
2) Due to our assumption we have safeE,A(t′1) = safeE,A(t′2) = true

and we know that either op ∈ {+,−, ∗, ∗∗} holds true, or op ∈ {//,mod , rem} and
A |= t′2 6= 0 do. In both cases, we can evaluate evalE(tγ) to evalE(t′1γ) op evalE(t′2γ),
apply the induction hypothesis to evalE(t′1γ) = n1 and evalE(t′2γ) = n2 and receive
evalE(tγ) = n1 op n2.

In the former case, we see that this expression is well defined for all n1, n2 ∈ Z and
all op ∈ {+,−, ∗, ∗∗}. In the latter case, we again use that γ conforms to s. Since
A |= t′2 6= 0, we see that t′2γ 6= 0 is a tautology, due to the definition of conforming
substitutions. Hence, evalE(t′1γ) op evalE(t′2γ) is well defined in this case as well.

We have thus shown that safeE,A(t) = true implies evalE(tγ) 6= ⊥ for all conforming
concretizations γ. Hence, statement 4.1 holds true.

Proof of statement 4.2

Let s = (〈(t, T) | G〉 ,G,U , E ,A) be some abstract state and let γ be some concretization
conforming to s. Assume safeE,A(t) = false. We show evalE(tγ) = ⊥ by structural
induction over t.

Induction base: t has no arguments In this case, since safeE,A(t) = false, we must
have t = X, where X is a program variable. We can then directly see that evalE(tγ) = ⊥,
since tγ = t, as γ does not substitute program variables.

Induction step: t has arguments For the induction step we have to distinguish five
cases, corresponding to the five possible ways that safeE,A(t) may yield false.

45

4. Abstract Semantics

Case 1: t = op(t′) and op ∈ {abs, sign,−} In this case we have, by definition,
safeE,A(t) = safeE,A(t′). Hence, by assumption, we have safeE,A(t′) = false. We can
apply the induction hypothesis to t′ and receive evalE(t′γ) = ⊥. Thus, we receive
evalE(tγ) = ⊥.

Case 2: t = op(t′1, t
′
2) and op ∈ {+,−, ∗, ∗∗} In this case we have safeE,A(t) =

safeE,A(t′1) ⊗ safeE,A(t′2) = false. Due to the definition of ⊗, we know that either
safeE,A(t′1) = false or safeE,A(t′2) = false. W.l.o.g. assume safeE,A(t′1) = false. We
can then apply the induction hypothesis to t′1 and receive evalE(t′1γ) = ⊥ and hence
evalE(tγ) = ⊥.

Case 3: t = op(t′1, t
′
2), op ∈ {//, op, rem} and A |= t′2 6= 0 This case is handled the

same way as case 2. Hence, we omit the proof to avoid unnecessary repetition.

Case 4: t = op(t′1, t
′
2), op ∈ {//, op, rem} and A |= t′2 = 0 Since A |= t′2 = 0 we

know that evalE(t′2γ) = 0 holds true. Hence, we have evalE(op(t′1, t
′
2)γ) = ⊥ due to the

definition of evalE .

Case 5: otherwise Since t does not start with the symbol of any built-in function, we
immediately have evalE(tγ) = ⊥ due to the definition of evalE .

We have thus shown that safeE,A(t) = false implies evalE(tγ) = ⊥ for all conforming
concretizations γ. Hence, statement 4.2 holds true.

Conclusion

We have shown that both statement 4.1 and 4.2 hold true. Hence, lemma 4.3 holds
true.

We make one more observation that allows us to keep unnecessary updates to a state
during evaluation to a minimum. This observation states that, if we are certain that a
term evaluates without an error, then we also know that all its term variables can only
be instantiated with arithmetic expressions that do not evaluate to an error.

Lemma 4.4. Let t be a term, let E be a set of variables and let A be an arithmetic state.
Then the statement

safeE,A(t) = true implies T (t) ⊆ E
holds true. �

Proof. We show this statement by structural induction over the term t. Assume that
safeE,A(t) = true holds true

Induction base: t has no arguments Since we assumed that safeE,A(t) = true holds
true, there are two cases to consider: The term t is either an integer or a term vari-
able. If t is a program variable or some user-defined constant, we would have a direct
contradiction to our assumption.

46

4.4. Evaluation of Arithmetic Logic Programs

Case 1: t = n is an integer In this case, T (t) = ∅ holds true and hence T (t) ⊆ V does
as well, whence the statement holds true.

Case 2: t = X is a term variable In this case, due to our assumption, X ∈ E holds
true. Hence, we have T (t) = {X} ⊆ E and the statement to be shown holds true.

Induction step: t has arguments Let t = f(t′1, . . . , t
′
n) and assume that safeE,A(ti) =

true implies T (ti) ⊆ E for all i ∈ [1;n]. Furthermore assume that safeE,A(t) = true
holds true. It is easy to see from the definition of safeE,A that due to safeE,A(t) = true,
safeE,A(ti) = true must also hold true for all i ∈ [1;n]. Hence, we can apply the induction
hypothesis and receive T (ti) ⊆ E for all i ∈ [1;n]. Since T (t) = ∪ni=1T (ti), we see that
T (t) ⊆ E holds true.

Conclusion We have shown that the statement

safeE,A(t) = true implies T (t) ⊆ E

holds true by structural induction over the structure of t.

Using this heuristic for safe evaluation of terms we can now concisely define abstract
evaluation rules that allow us to evaluate arithmetic comparisons and assignments. We
do so in the following section.

4.4.2. Evaluation of Arithmetic Comparison

In this section we define abstract evaluation rules for abstract states that have the form
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A), where ./ is one of =:=, =\=, <, >, =< and >=. We
treat the is-predicate in the following section.

There are three possible outcomes of the evaluation of a concretization of such a state.
It may be the case that the evaluation leads to an error, for example due to a division
by zero. This corresponds to Concrete Evaluation Rule 3.7. The other two possible
cases are those in which the evaluation of terms succeeds and the comparison between
the integers succeeds or fails, respectively. These cases were treated in the concrete case
with Concrete Evaluation Rule 3.8 and Concrete Evaluation Rule 3.9.

In the abstract case it may be possible that we cannot tell precisely which of these
three cases occurs, as we see in the following example.

Example 4.12 (Arithmetic Comparison in an Abstract State). Consider the abstract
state

s := (〈>(X, 0), f | g〉 , ∅, ∅, ∅,A∅)

and the three concretizations

σ1 := X 7→ //(1, 0) σ2 := X 7→ 1 σ3 := X 7→ −1

47

4. Abstract Semantics

all of which conform to s. Hence, the three concrete states

s1 := 〈>(X, 0), f | g〉σ1 = 〈>(//(1, 0), 0), f | g〉
s2 := 〈>(X, 0), f | g〉σ2 = 〈>(1, 0), f | g〉
s3 := 〈>(X, 0), f | g〉σ3 = 〈>(−1, 0), f | g〉

are all concretizations of s. We see that we have to use Concrete Evaluation Rule 3.7 in
order to evaluate s1, which results in the concrete state

s′1 = 〈Err〉 .

Furthermore, we can only evaluate s2 using Concrete Evaluation Rule 3.8, yielding the
successor state

s′2 = 〈f | g〉 .

The only rule applicable to s3 is Concrete Evaluation Rule 3.9, which results in the state

s′3 = 〈g〉 .

Hence, the abstract successor states of s must cover all three possible outcomes of this
comparison. N

The previous example has shown the worst possible case for our semantics, which is one
in which we are unable to rule out any of the three outcomes of arithmetic comparison.
In some cases, however, it is possible to rule out one or two of these cases, which reduces
the number of states produced by our semantics. We first present the three rules for the
cases in which we can remove two of the three possible outcomes and only need a single
abstract successor state.

The easiest case is the one in which the evaluation of either of the two expressions
inevitably fails. We use the previously defined function safeE,A in order to characterize
such states. Recall that safeE,A takes the set of variables that are known to be substituted
with expressions that evaluate without an error, which is stored in our abstract state in
the set E . It also takes the arithmetic state A of the abstract state as a parameter. This
rule is formalized in Abstract Evaluation Rule 4.7.

Abstract Evaluation Rule 4.7 Arithmetic Comparison Rule (Error)

ArithCompErr
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A)

Where: ./ ∈ {=:=,=\=, <,>,=<,>=}
safeE,A(t1)⊗ safeE,A(t2) ≡ false

The other two cases in which we only produce a single successor state are very similar
to each other. For both cases we first need to make sure that the evaluation of the
expressions on either side does not result in an error. We do so by demanding that both
safeE,A(t′1) ≡ true and safeE,A(t′2) ≡ true hold true.

48

4.4. Evaluation of Arithmetic Logic Programs

If we can then infer that either A |= (t1 ./ t2) or A |= ¬ (t1 ./ t2) holds true, we only
need to produce a single successor state in which the comparison either succeeds or fails.
These ideas are formalized in Abstract Evaluation Rule 4.8 and Abstract Evaluation
Rule 4.9, respectively.

Note that we do not update the set E , since this would only add redundant information,
as both safeE,A(t1) and safeE,A(t2) evaluate to true already. This has been shown in
Lemma 4.4.

Abstract Evaluation Rule 4.8 Arithmetic Comparison Rule (Success)

ArithCompSucc
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A)

(〈T | G〉 ,G′,U , E ,A)

Where: G′ := G ∪ T (t1) ∪ T (t2)
./ ∈ {=:=,=\=, <,>,=<,>=}
safeE,A(t1)⊗ safeE,A(t2) ≡ true

A |= (t1 ./ t2)

Abstract Evaluation Rule 4.9 Arithmetic Comparison Rule (Failure)

ArithCompFail
(〈(./(t1, t2), T) | G〉 ,G′,U , E ,A)

(〈G〉 ,G′,U , E ,A)

Where: G′ := G ∪ T (t1) ∪ T (t2)
./ ∈ {=:=,=\=, <,>,=<,>=}
safeE,A(t1)⊗ safeE,A(t2) ≡ true

A |= ¬ (t1 ./ t2)

Having covered those cases in which a single successor state suffices to represent all
concrete successor states, we now formalize those cases in which we need two abstract
successor states. It may be the case that we are certain that the evaluation of both
arguments of ./(t1, t2) succeeds without error, but we do not know the result of the
comparison. In this case we do not need to produce an error state, but we receive two
successor states, modeling success and failure of the comparison, respectively.

This rule is given as Abstract Evaluation Rule 4.10. Note that we update the arith-
metic state of the successor state to contain the assumption that we made in either
case. This allows us to keep our arithmetic inference precise, as this knowledge may
be used for other arithmetic comparisons later on. We do not, however, update the set
of error-free expressions E , as we are already certain that the evaluation of t1 and t2
succeeds. We will show later that these additions to the knowledge base do not influence
the soundness of our semantics and that they are nothing but a case analysis.

Another possible case is that we are uncertain whether or not the evaluation of the
expressions on both sides will succeed, but we know the result of the comparison if it does.
Example for such case would be the comparisons =:=(X,X) and =\=(X,X), where X

49

4. Abstract Semantics

Abstract Evaluation Rule 4.10 Arithmetic Comparison Rule (Success, Failure)

ArithCompSuccFail
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A)

(〈T | G〉 ,G′,U , E ,A′) (〈G〉 ,G′,U , E ,A′′)

Where: G′ := G ∪ T (t1) ∪ T (t2)
A′ := A ∩A{t1 ./ t2}
A′′ := A ∩A{¬(t1 ./ t2)}
./ ∈ {=:=,=\=, <,>,=<,>=}
safeE,A(t1)⊗ safeE,A(t2) ≡ true

A 6|= (t1 ./ t2) and A 6|= ¬(t1 ./ t2)

is a term variable. In order to cover these cases, we introduce Abstract Evaluation Rule
4.11 and Abstract Evaluation Rule 4.12, which formalize success and failure of such an
unsafe comparison, respectively. We do not update the arithmetic states in these rules,
since we are already able to infer the truth of the relevant comparison. We do, however,
update the set of arithmetic variables in the corresponding case.

Abstract Evaluation Rule 4.11 Arithmetic Comparison Rule (Error, Success)

ArithCompErrSucc
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) (〈T | G〉 ,G′,U , E ′,A)

Where: G′ := G ∪ T (t1) ∪ T (t2)
E ′ := E ∪ T (t1) ∪ T (t2)
./ ∈ {=:=,=\=, <,>,=<,>=}
safeE,A(t1)⊗ safeE,A(t2) ≡ maybe

A |= (t1 ./ t2)

Abstract Evaluation Rule 4.12 Arithmetic Comparison Rule (Error, Failure)

ArithCompErrFail
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) (〈G〉 ,G′,U , E ′,A)

Where: G′ := G ∪ T (t1) ∪ T (t2)
E ′ := E ∪ T (t1) ∪ T (t2)
./ ∈ {=:=,=\=, <,>,=<,>=}
safeE,A(t1)⊗ safeE,A(t2) ≡ maybe

A |= ¬(t1 ./ t2)

The least precise case, that is, the one that produces the most successor states, is the
case in which we neither know whether or not the evaluation of the compared expressions
results in an error, nor what result the evaluation of the relation has. In this case, we

50

4.4. Evaluation of Arithmetic Logic Programs

have to produce the error state for the case that the evaluation of the expressions fails
as well as one case for the success and the failure of the comparison each. For this case
we introduce Abstract Evaluation Rule 4.13. In this rule we update both the arithmetic
states of the resulting states as well as their arithmetic variables.

Abstract Evaluation Rule 4.13 Arithmetic Comparison (Error, Success, Failure)

ArithCompErrSuccFail
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) (〈T | G〉 ,G′,U , E ′,A′) (〈G〉 ,G′,U , E ′,A′′)

Where: G′ := G ∪ T (t1) ∪ T (t2)
E ′ := E ∪ T (t1) ∪ T (t2)
A′ := A ∩A{t1 ./ t2}
A′′ := A ∩A{¬(t1 ./ t2)}
./ ∈ {=:=,=\=, <,>,=<,>=}
safeE,A(t1)⊗ safeE,A(t2) ≡ maybe

A 6|= (t1 ./ t2) and A 6|= ¬(t1 ./ t2)

These rules cover all combinations of the three possible successor states of an arith-
metic comparison. While Abstract Evaluation Rule 4.13 allows us to produce the widest
range of successor states, it would yield abstract states without any concretizations if
applied indiscriminately. The presence of the other rules allows us to only produce states
that actually represent concrete states.

Example 4.13 (Abstract evaluation of arithmetic comparisons). Consider Program 2.2
from page 12, which we reprint as Program 4.2 for the sake of readability. Also consider
the query q := fac(X,Y). We show the relevant parts of the tree of abstract states
induced by this query on Program 4.2 in Figure 4.2.

Program 4.2 Computation of the factorial

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

As argued before, the inference starts in the abstract state

sqinit := (〈fac(X0, Y0)〉 , ∅, ∅, ∅,A∅)

This state is represented by node A in the tree. We start the evaluation similar to
the concrete case, that is, by application of Abstract Evaluation Rule 4.2 and Abstract
Evaluation Rule 4.3. The intermediate state is not shown in the figure. We end up,
among others, with node B, in which we now have to apply one of the rules for arithmetic
comparisons.

Since safe∅,∅(X) = maybe holds true and since both ∅ 6|= X > 0 and ∅ 6|= X ≤ 0 hold
true, we apply Abstract Evaluation Rule 4.13, which yields three successor states for the

51

4. Abstract Semantics

(〈fac(X0, Y0)〉 , ∅, ∅, ∅,A∅)

. . .

(〈> (X2, 0), fac(−(X2, 1), Y11), is(Y2, ∗(Y11, X2)) |
fac(X0, Y0)fac(X1,Y1) :- =:=(X1,0),is(Y1,1) | ?1

〉
, ∅, ∅, ∅,A∅)

. . .

(〈Err〉 , ∅, ∅, ∅,A∅)

(〈fac(−(X2, 1), Y11), is(Y2, ∗(Y11, X2)) |
fac(X0, Y0)fac(X1,Y1) :- =:=(X1,0),is(Y1,1) | ?1

〉
, ∅, ∅, {X2},A{X2>0})

(
〈
fac(X0, Y0)fac(X1,Y1) :- =:=(X1,0),is(Y1,1) | ?1

〉
,

∅, ∅, {X2},A{X2≤0})

. . .

. . . (〈=:= (X4, 0), is(Y4, 1) | ?2 | ?1〉 , ∅, ∅, {X4},A{X4>0})

(〈?2 | ?1〉 , ∅, ∅, {X4},A{X4>0})

. . .

(〈ε〉 , ∅, ∅, {X4},A{X4>0})

.

A

B

C

D

E

F

G

H

Figure 4.2.: Parts of abstract evaluation of fac(X,Y) on Program 4.2

state represented by node B. The first state is the error state, which is represented by
node C. This node has no more successors, just as a concrete error state would.

The second and third state are the states reached by success and failure of the com-
parison, respectively. They are represented by nodes D and E. Note that we updated
the arithmetic variables in both states to contain the set T (X2)∪T (0) = {X2}. We also
updated the arithmetic states of both states to reflect whether the comparison X2 = 0
succeeds or fails.

We consider the remaining evaluation of node D. After some intermediate steps, which
are not shown in this figure, we reach node F. During the intermediate steps, the variable
X2 has been renamed to X4. At this point we have to decide whether or not the

52

4.4. Evaluation of Arithmetic Logic Programs

evaluation of the arithmetic term represented by the term variable X4 will succeed and
whether or not the integer this term evaluates to is equal to zero.

Both of these pieces of information are stored in the knowledge base of node D. We
see that both safe{X},A{X>0}

(X) ≡ true and A{X>0} |= (X 6= 0) hold true. Hence, we
know that the evaluation of X will succeed and that the comparison of this term for
equality with zero will fail. Thus, we have to apply Abstract Evaluation Rule 4.9 and
receive only a single state that corresponds to the aforementioned facts. This state is
represented by node G.

At this point, we only need to remove the end-of-scope markers ?2 and ?1. We can do
so by applying Abstract Evaluation Rule 4.6 twice and receive the node labeled with H
in Figure 4.2. This node does not have any successor states, so the inference terminates
at this point. N

We have seen in the previous example that our choice of rules provides a reasonable
abstraction of the concrete evaluation of the predicates for arithmetic comparison. In
Section 4.5 we show that the abstraction provided by this set of rules is actually sound.
The main idea for that proof is that whenever we produce multiple abstract successor
states, our changes to the knowledge base only formalize the case analysis performed in
that rule. We formalize and prove this idea in the following two lemmas.

Lemma 4.5. Let

s = (〈./(t1, t2), T | G〉 ,G,U , E ,A)

be an abstract state, where ./ ∈ {=:=,=\=, <,>,=<,>=}, and let s be a member of
Conc(s) with the concretizing substitution γ.

If Concrete Evaluation Rule 3.8 is applicable to s, then γ also conforms to

s′ =
(
〈./(t1, t2), T | G〉 ,G′,U , E ′,A′

)
,

where G′ := G ∪ T (t1) ∪ T (t2), E ′ := E ∪ T (t1) ∪ T (t2) and A′ := A ∩A{t1 ./ t2}. �

Proof. It is clear that γ fulfills the first and the third condition of Definition 4.6, since
both S := 〈./(t1, t2), T | G〉 and U are the same in both abstract states. Hence, the
second, fourth and fifth condition remain to be shown.

We start by showing that for all X ∈ G ∪ T (t1) ∪ T (t2), it holds true that V(Xγ) is
empty. If X is a member of G, this is clear, since γ conforms to s. If, however, X is
a member of T (t1) or T (t2), Lemma 3.2 yields that Xγ does not contain any program
variables. Hence, this statement holds true.

We now show that for all X ∈ E ∪ T (t1) ∪ T (t2), it holds true that evalC(Xγ) 6= ⊥.
Again, if X is a member of E , then we know that this holds true since γ conforms to
s. Also, if X is a member of T (t1) ∪ T (t2), then Lemma 3.1 yields the truth of the
statement. Thus, this statement holds true as well.

It remains to show that for all evalE ◦ γ
∣∣
T is a member of A ∩ A{t1./t2}. We know

that it is a member of A since γ already conformed to s. Furthermore, we know that
(t1 ./ t2)evalE ◦ γ

∣∣
T is a tautology, since we were able to apply Concrete Evaluation

53

4. Abstract Semantics

Rule 3.8 to s, which is only applicable if evalC(./(t1, t2)) holds true. Hence, evalE ◦ γ
∣∣
T

is a member of A{t1./t2} by Definition 4.2 as well. Thus, the statement holds true.
We have thus shown that γ fulfills all conditions of Definition 4.6. Thus, γ conforms

to s′ and Lemma 4.5 holds true.

Lemma 4.6. Let
s = (〈./(t1, t2), T | G〉 ,G,U , E ,A)

be an abstract state, where ./ ∈ {=:=,=\=, <,>,=<,>=}, and let s be a member of
Conc(s) with the concretizing substitution γ.

If Concrete Evaluation Rule 3.9 is applicable to s, then γ also conforms to

s′ =
(
〈./(t1, t2), T | G〉 ,G′,U , E ′,A′

)
,

where G′ := G ∪ T (t1) ∪ T (t2), E ′ := E ∪ T (t1) ∪ T (t2) and A′ := A ∩A{¬(t1 ./ t2)}. �

Proof. This proof is nearly identical to the previous one, except for the replacement of
t1 ./ t2 by ¬(t1 ./ t2). We can copy the previous proof and receive that Lemma 4.6 holds
true as well.

4.4.3. Evaluation of Arithmetic Assignment

In the previous section, we have defined rules that handle abstract states of the form
(〈(./(t1, t2), T) | G〉 ,G,U , E ,A), where ./ is one of =:=, =\=, <, >, =<, and >=. We
have also treated the cut in the section before that. The only built-in predicate that
we still need to handle is the function symbol is/2. Its semantics have been formally
defined in Section 3.2 (States and Evaluation). The intuitive idea behind this predicate
is to evaluate its right-hand side to some integer and then attempt unification between
this integer and the left-hand side. If the evaluation of the right-hand side fails, an error
is thrown, which, in our case, leads to the abortion of the inference.

Similar to the case of arithmetic comparisons, we have three possible outcomes of the
evaluation of this predicate. Again, it may not be possible to decide precisely which of
the three outcomes is going to happen, due to the presence of term variables.

Example 4.14 (Is-predicate in the presence of term variables). Consider the abstract
state

s := (〈is(1, X), f | g〉 , ∅, ∅, ∅, ∅)

and the three substitutions

σ1 := X 7→ //(1, 0) σ2 := X 7→ 1 σ3 := X 7→ 2

all of which conform to s. These substitutions concretize s to the concrete states

s1 := 〈is(1, X), f | g〉σ1 = 〈is(1, //(1, 0)), f | g〉
s2 := 〈is(1, X), f | g〉σ2 = 〈is(1, 1), f | g〉
s3 := 〈is(1, X), f | g〉σ3 = 〈is(1, 2), f | g〉

54

4.4. Evaluation of Arithmetic Logic Programs

We see that these three states, all of which are concretizations of s, have vastly differing
concrete successor states. During the evaluation of s1, the program tries to evaluate
//(1, 0) which leads to the successor state

s′1 = 〈Err〉

The evaluation of the right-hand side succeeds in the state s2, as does the unification
of the two terms 1 and 1. Thus, the evaluation of the current term succeeds and the
resulting state is

s′2 = 〈f | g〉

In the final state s3, the evaluation of the right-hand expression succeeds as well, but
the unification with the left-hand side does not, since the terms 1 and 2 do not unify.
Hence, the goal is abandoned and we receive the successor state

s′3 = 〈g〉

There is no single abstract state that represents all of these successor states. N

Again, this example displays the worst possible case with regards to the number of
abstract states that we produce. In fact, there are several cases in which we can find a
single abstract state that represents all possible concrete successor states. The simplest
of these cases is the one in which the evaluation of the right-hand side of the term leads
to an error. In this case we only need to produce an error state. This is formalized in
Abstract Evaluation Rule 4.14.

Abstract Evaluation Rule 4.14 Arithmetic Assignment Rule (Error)

ArithAssError
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A)

Where: safeE,A(t2) ≡ false

Another simple case is the one in which we are certain that the unification of the
result of the evaluation of the right-hand side with the left-hand side will fail. This is,
for example, the case if the left-hand side is neither a variable nor an integer. Even if the
right-hand side is evaluated successfully, the result of the evaluation can only unify with
a variable or an integer. Thus, we only need to produce a state in which the unification
fails in this case, as long as we are certain that the evaluation of the right-hand side
succeeds. The formal rule for this is given as Abstract Evaluation Rule 4.15.

A similar rule for the case that we are not sure whether or not the evaluation of
the right-hand side succeeds is given as Abstract Evaluation Rule 4.16. In this rule we
update the set of arithmetic variables in the non-error state, just as we did in the similar
case for arithmetic comparison in Abstract Evaluation Rule 4.12.

In the previous two rules we excluded three possibilities for t1. For these rules to be
applicable, t1 may neither be a member of Z, nor V, nor T . We now define rules to
handle each of these three cases and start with the case that t1 is a member of Z.

55

4. Abstract Semantics

Abstract Evaluation Rule 4.15 Arithmetic Assignment Rule (No Unification, Safe)

ArithAssNoUnificationSafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈G〉 ,G′,U , E ,A)

Where: G′ := G ∪ T (t2)
safeE,A(t2) ≡ true

t1 6∈ Z ∪ V ∪ T

Abstract Evaluation Rule 4.16
Arithmetic Assignment Rule (No Unification, Unsafe)

ArithAssNoUnificationUnsafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

Err (〈G〉 ,G′,U , E ′,A)

Where: G′ := G ∪ T (t2)
E ′ := E ∪ T (t2)
safeE,A(t2) = maybe

t1 6∈ Z ∪ V ∪ T

In this case there are three possible outcomes: Either the evaluation of the right-
hand side fails, or it succeeds and we have to distinguish between succeeding and failing
unification. If the right-hand term evaluates to the same integer as the one on the left-
hand side, the unification succeeds and the evaluation continues with the same goal.
Otherwise, the goal is abandoned and the evaluation continues with the next goal.

In the best case, we are certain that the evaluation of the right-hand side succeeds
and we can infer whether or not it is the same integer as the left-hand side using the
arithmetic state. If we can infer either of these facts, we only have to produce a single
successor state. The case in which the integers on either side are the same is treated in
Abstract Evaluation Rule 4.17. The case of a failing unification is handled in Abstract
Evaluation Rule 4.18.

Abstract Evaluation Rule 4.17 Arithmetic Assignment Rule (Literal, Success, Safe)

ArithAssLitSuccessSafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈T | G〉 ,G′,U , E ,A)

Where: G′ := G ∪ T (t2)
safeE,A(t2) ≡ true

t1 = n ∈ Z
A |= (n = t2)

It may also be the case that we know that the evaluation of the right-hand side of the
term succeeds, but we do not know whether or not it evaluates to the same integer as

56

4.4. Evaluation of Arithmetic Logic Programs

Abstract Evaluation Rule 4.18 Arithmetic Assignment Rule (Literal, Failure, Safe)

ArithAssLitFailSafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈G〉 ,G′,U , E ,A)

Where: G′ := G ∪ T (t2)
safeE,A(t2) ≡ true

t1 = n ∈ Z
A |= (n 6= t2)

the left-hand side. In this case we need to produce two states, one covering the case in
which the unification succeeds, and one in which it fails. These states are created using
Abstract Evaluation Rule 4.19. We update the resulting arithmetic states according to
success or failure of the unification in a similar way to the corresponding case distinction
in Abstract Evaluation Rule 4.10.

Abstract Evaluation Rule 4.19
Arithmetic Assignment Rule (Literal, Unknown, Safe)

ArithAssLitUnknownSafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈T | G〉 ,G′,U , E ,A′) (〈G〉 ,G′,U , E ,A′′)

Where: G′ := G ∪ T (t2)
A′ := A ∩A{t1=t2}
A′′ := A ∩A{t1 6=t2}
safeE,A(t2) ≡ true

t1 = n ∈ Z
A 6|= (n = t2) and A 6|= (n 6= t2)

In all of the preceding rules we have assumed that we are certain that the evaluation
of the right-hand side of the predicate succeeds. This was formalized using the condition
that safeE,A(t2) ≡ true holds true. We have covered the case that safeE,A(t2) ≡ false
holds true previously in Abstract Evaluation Rule 4.14. Hence, we need to consider the
case that safeE,A(t2) ≡ maybe holds true.

This assumption does not change the basic reasoning behind the given rules. The
only major change we need to make is the production of an error state. In the non-error
states we furthermore have to store the assumption that the evaluation of t2 succeeded.
We do this by adding the term variables of t2 to the set of arithmetic variables, just like
we did in the previous section when evaluating arithmetic comparisons.

The case in which we do not know whether or not the evaluation of the right-hand side
succeeds, but we are certain that, if it succeeds, it evaluates to the same integer as the
one on the left-hand side, is covered in Abstract Evaluation Rule 4.20. If we are certain
that, if the right-hand side evaluates without an error, it evaluates to some integer other
than the one on the left-hand side, we apply Abstract Evaluation Rule 4.21. Finally,

57

4. Abstract Semantics

the case in which we have the least information is formalized in Abstract Evaluation
Rule 4.22. In this case we know neither whether the evaluation of the right-hand side
succeeds, nor, if it does, to which integer it will evaluate.

Abstract Evaluation Rule 4.20
Arithmetic Assignment Rule (Literal, Success, Unsafe)

ArithAssLitSuccessUnsafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) (〈T | G〉 ,G′,U , E ′,A)

Where: G′ := G ∪ T (t2)
E ′ := E ∪ T (t2)
safeE,A(t2) ≡ maybe

t1 = n ∈ Z
A |= (n = t2)

Abstract Evaluation Rule 4.21
Arithmetic Assignment Rule (Literal, Failure, Unsafe)

ArithAssLitFailUnsafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) (〈G〉 ,G′,U , E ′,A)

Where: G′ := G ∪ T (t2)
E ′ := E ∪ T (t2)
safeE,A(t2) ≡ maybe

t1 = n ∈ Z
A |= (n 6= t2)

At this point, two cases remain to be handled. It may still be the case that t1 is
either a program- or a term variable. These cases are denoted by t1 ∈ V and t1 ∈ T ,
respectively. We treat the case t1 ∈ V in the following rules.

If t1 is a program variable, then we are certain that the unification succeeds, since a
program variable unifies with every term. However, even if we are able to tell that the
right-hand side of the is-predicate evaluates without an error, we may not be able to
determine which integer that is. Due to these complications, we take a slight detour in
order to evaluate abstract states of this form.

For this, we take a fresh term variable and replace all occurrences of the left-hand side
of the is-predicate with this fresh variable. We furthermore store the equality between
the new term variable and the result of the evaluation of the expression on the right-
hand side in the arithmetic state. The fresh variable then represents the result of the
evaluation of the right-hand side.

Example 4.15 (Abstract evaluation of is(X, Y)). Consider the abstract state

s := (〈is(X, Y),=:=(X, Y)〉 , {Y }, ∅, {Y },A∅)

58

4.4. Evaluation of Arithmetic Logic Programs

Abstract Evaluation Rule 4.22
Arithmetic Assignment Rule (Literal, Unknown, Unsafe)

ArithAssLitUnknownUnsafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) s′1 s′2

Where: s′1 := (〈T | G〉 ,G′,U , E ′,A′)
G′ := G ∪ T (t2)
E ′ := E ∪ T (t2)
A′ := A ∩A{t1=t2}
s′2 := (〈G〉 ,G′,U , E ′,A′′)
A′′ := A ∩A{t1 6=t2}
safeE,A(t2) ≡ maybe

t1 = n ∈ Z
A 6|= (n = t2) and A 6|= (n 6= t2)

in which X is a program variable and Y is a term variable. The two concretizations

σ1 :=Y 7→ 1 σ2 :=Y 7→ 2

both conform to s. Hence, we cannot tell which number is bound to X in the remainder of
the execution. Furthermore, we are unable to store the relation X = Y in the arithmetic
state of a potential abstract successor state, since the arithmetic state can only store
relations over term variables, but not over program variables.

Thus, we pick the fresh term variable Z, replace all occurrences of X in the remaining
goal with Z and store the fact Z = Y in the resulting abstract state. We also add Z to
the set of ground variables as well as to the set of arithmetic variables. Hence, we end
up with the resulting abstract state

s′ = (〈=:=(Z, Y)〉 , {Y,Z}, ∅, {Y, Z},A{Z=Y })

which represents all concrete successor states of s. N

The intuition of this method is formalized in Abstract Evaluation Rule 4.23 for the
case that we are certain that the right-hand side of the predicate evaluates to some
integer. If we cannot tell whether or not this is the case, we apply Abstract Evaluation
Rule 4.24 and produce an error state in addition to the succeeding successor state.

There remains the final case in which t1 is a term variable, which is denoted by
t1 ∈ T . Since t1 denotes an arbitrary term in this case, which is only constrained by the
knowledge base of its state, we have no way of telling whether t1 represents a number, a
program variable or some other term. Hence, we need to account for both possibilities
of succeeding and failing unification. Thus, even if we are certain that t2 is evaluated
without errors, we have to produce two states.

In the case that the unification succeeds, we use the same method that we applied in
Abstract Evaluation Rule 4.23 and Abstract Evaluation Rule 4.24. For the failing case,

59

4. Abstract Semantics

Abstract Evaluation Rule 4.23
Arithmetic Assignment Rule (Program Variable, Safe)

ArithAssProgvarSafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈T [t1 7→ Y] | G〉 ,G′,U , E ,A′)

Where: Y 6∈ T is a fresh term variable
G′ := G ∪ T (t2)
A′ := A ∩A{Y =t2}
safeE,A(t2) ≡ true

t1 ∈ V

Abstract Evaluation Rule 4.24
Arithmetic Assignment Rule (Program Variable, Unsafe)

ArithAssProgvarUnsafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) (〈T [t1 7→ Y] | G〉 ,G′,U , E ′,A′)

Where: Y 6∈ T is a fresh term variable
G′ := G ∪ T (t2)
E ′ := E ∪ {Y } ∪ T (t2)
A′ := A ∩A{Y =t2}
safeE,A(t2) ≡ maybe

t1 ∈ V

we simply store the relation t1 6= t2 in the arithmetic state. This intuition is formalized
in Abstract Evaluation Rule 4.26.

A similar rule is given as Abstract Evaluation Rule 4.26 for the case in which we are
uncertain whether or not the evaluation of the right-hand side of the predicate succeeds.

The most common use case for the is-predicate is the evaluation of an expression and
the assignment of the result to a program variable on the left-hand side. In this section
we have provided abstract execution rules for all possible uses of this predicate. In
combination with those rules defined in the previous section, these rules provide a sound
and precise abstraction of the concrete behavior of Prolog. They are also amenable
to abstract interpretation, since the choice of rules is deterministic. We show these
properties in the following section.

4.5. Properties of the Abstract Evaluation Relation

In the previous section, we have defined a set of 26 rules that define an abstraction of
the concrete execution of a program defined in Section 3 (Concrete Semantics). We
have claimed that this abstraction is not only sound, but that it is also amenable for
automated abstract analysis. In this section, we show both of these claims.

60

4.5. Properties of the Abstract Evaluation Relation

Abstract Evaluation Rule 4.25 Arithmetic Assignment Rule (Term Variable, Safe)

ArithAssTermvarSafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈T [t1 7→ Y] | G〉 ,G′,U , E ,A′) (〈G〉 ,G′,U , E ,A′′)

Where: Y 6∈ T is a fresh term variable
G′ := G ∪ T (t2)
A′ := A ∩A{Y =t2}
A′′ := A ∩A{t1 6=t2}
safeE,A(t2) ≡ true

t1 ∈ T

Abstract Evaluation Rule 4.26
Arithmetic Assignment Rule (Term Variable, Unsafe)

ArithAssTermvarUnsafe
(〈is(t1, t2), T | G〉 ,G,U , E ,A)

(〈Err〉 ,G,U , E ,A) s′1 s′2

Where: s′1 := (〈T [t1 7→ Y] | G〉 ,G′,U , E ′,A′)
Y 6∈ T is a fresh term variable
G′ := G ∪ T (t2)
E ′ := E ∪ {Y } ∪ T (t2)
A′ := A ∩A{Y =t2}
s′2 := (〈G〉 ,G′,U , E ′′,A′′)
A′′ := A ∩A{t1 6=t2}
safeE,A(t2) ≡ true

t1 ∈ T

We begin by showing that the choice of a rule to apply to any given abstract state is
deterministic in Section 4.5.1. In Section 4.5.2, we show the soundness of this abstrac-
tion.

4.5.1. Determinacy

We are now going to show that each abstract state has at most a single rule that can be
applied to it. First we formalize this notion.

Definition 4.10 (Deterministic abstract evaluation). Let R = r1, . . . , rn be a set of
abstract evaluation rules. We call R deterministic if the following holds:

for all s ∈ AbstractStates it holds that

for all i ∈ [1;n] . [ri is applicable to s] implies

[for all j ∈ [1;n] . i 6= j implies [rj is not applicable to s]]

�

61

4. Abstract Semantics

Lemma 4.7 (Determinacy of abstract rules). The set R consisting of the Abstract Eval-
uation Rules 4.1 through 4.26 is deterministic. �

Proof. Let R be the set of Abstract Evaluation Rules 4.1 through 4.26 and let s =
(〈t, T | G〉 ,G,U , E ,A) be an abstract state. Let i be some integer in the range [1; 26]
and assume that Abstract Evaluation Rule 4.i is applicable to s. We show that there is
no integer j in the range [1; 26] such that i 6= j and such that Abstract Evaluation Rule
4.j is applicable to s by case distinction with respect to the value of i.

Case i = 1 In this case we have t = � and T = ε. Since no other rule allows this, no
other rule is applicable to s.

Case i = 2 In this case we know that t is of the form f(t1, . . . , tn) for some n ≥ 0,
where f is a user-defined function symbol. No other rule handles unlabeled user-defined
predicates, so no other rule is applicable to s.

Case i = 3 In this case we have (t, T)h :- b, where there is no conforming substitution γ
such that tγ and h unify. The only other rule that is applicable to labeled goals, namely
rule 4.4 is only applicable if there exists such a substitution. Hence, no other rule is
applicable to s.

Case i = 4 The same reasoning as in the previous case applies. Thus, no other rule is
applicable to s.

Case i ∈ {5, 6} In this case we have either t = !m or t = ?m. Since no other rule
handles these constructs, no other rule is applicable to s in either case.

Case i = 7 We have t = ./(t1, t2), where ./ ∈ {=:=,=\=, <,>,=<,>=} and safeE,A(t1)
⊗safeE,A(t2) ≡ false. Since t is of the form ./(t1, t2), the only candidates for other ap-
plicable rules are rules 4.8 through 4.13. However, all of these rules demand that either
safeE,A(t1) ⊗ safeE,A(t2) ≡ false or safeE,A(t1) ⊗ safeE,A(t2) ≡ maybe holds true, both
of which are obviously false in this case. Thus, no other rule is applicable to s.

Case i ∈ {8, 9, 10, 11, 12, 13} If either of these rules is applicable, the respective other
rules are the only other candidates for applicability due to the syntactic structure of t =
./(t1, t2) are the other rules treated in this case. We list the restrictions for applicability
of this rule in Table 4.1. It is then easy to see that, if the requirements for one Rule
are fulfilled, those for none of the other Rules are fulfilled. Thus, no other rules are
applicable to s.

Case i = 14 If Abstract Evaluation Rule 4.14 is applicable to s, then we have t =
is(t1, t2), where safeE,A(t2) ≡ false holds true. Since all other rules that are applicable
to is(t1, t2) require that safeE,A(t2) ≡ false does not hold true, no other rule is applicable
to s.

62

4.5. Properties of the Abstract Evaluation Relation

safeE,A(t1)
⊗

safeE,A(t2)
A |= ./(t1, t2) A |= ¬ ./(t1, t2)

Rule 4.8 true true false
Rule 4.9 true false true
Rule 4.10 true false false
Rule 4.11 maybe true false
Rule 4.12 maybe false true
Rule 4.13 maybe false false

Table 4.1.: Requirements for applicability of Abstract Evaluation Rules 4.8 through
4.13

Case i = 15 If Abstract Evaluation Rule 4.15 is applicable to s, then t = is(t1, t2)
and t1 6∈ Z ∪ V ∪ T . The only other rule that allows this is Abstract Evaluation Rule
4.16, which demands that safeE,A(t2) ≡ maybe holds true. Since Abstract Evaluation
Rule 4.15 requires safeE,A(t2) ≡ true to hold true, Abstract Evaluation Rule 4.16 is not
applicable. Thus, no other rule is applicable to s.

Case i = 16 The reasoning in this case is the same as in the previous case. For the
same reason that Abstract Evaluation Rule 4.16 was not applicable in that case, Abstract
Evaluation Rule 4.15 is not applicable in this case. Thus, no other rule is applicable to
s.

Case i ∈ {17, 18, 19, 20, 21, 22} In all of these cases we have t = is(t1, t2) and t1 ∈ Z.
Thus, the only candidates for applicable rules in these cases are Abstract Evaluation
Rules 4.17 through 4.22. We summarize the requirements for applicability of these rules
in Table 4.2. It is easy to see that if one of these rules is applicable to s, none of the
others is. Thus, no other rule is applicable to s.

safeE,A(t2) A |= (n = t2) A |= (n 6= t2)

Rule 4.17 true true false
Rule 4.18 true false true
Rule 4.19 true false false
Rule 4.20 maybe true false
Rule 4.21 maybe false true
Rule 4.22 maybe false false

Table 4.2.: Requirements for applicability of Abstract Evaluation Rules 4.17 through
4.22

63

4. Abstract Semantics

Case i ∈ {23, 24} In these cases the only candidate for applicability is the other rule,
respectively. However, since Abstract Evaluation Rule 4.23 requires safeE,A(t2) ≡ true
to hold true, whereas Abstract Evaluation Rule 4.24 requires safeE,A(t2) ≡ maybe, the
respective other rule is not applicable. Thus, no other rule is applicable to s.

Case i ∈ {25, 26} The same reasoning as in the previous case applies here. Thus, no
other rule is applicable to s.

Conclusion We have shown for all i ∈ [1; 26] that, if Abstract Evaluation Rule 4.i
is applicable to some abstract state s, none of the other abstract evaluation rules are.
Thus, we have shown the claim that the set of abstract evaluation rules given in the
previous sections is deterministic.

This lemma is one of the main justifications for our informal claim that our abstract
semantics is well-suited for automated analysis of programs. We state the other, more
important justification for this claim in the next section, where we show that our ab-
straction is actually sound.

4.5.2. Soundness

The typical properties of interest for abstract semantics are those of soundness and com-
pleteness. An abstract semantics is called sound if it does not strictly underapproximate
the concrete semantics. It is called complete if it does not strictly overapproximate the
concrete semantics. If a semantics is both sound and complete, it provides an exact
representation of the underlying concrete semantics.

The semantics that we have defined in the previous section is sound, but incomplete.
We will show both of these statements in this section.

We start with the definition of the abstract evaluation relation ⇒. This relation is
defined similarly to → in the concrete case.

Definition 4.11 (Abstract evaluation relation). Let s and s′ be abstract states. We
say that s evaluates to s′ iff there exists an abstract evaluation rule that transforms s
into s′. We write s⇒ s′ in this case.

We furthermore write s⇒∗ s′ if there exists a sequence s1, . . . , sk of states such that
s = s1, s′ = sk and si ⇒ si+1 holds true for all i ∈ [1; k − 1]. �

This definition allows us to write s ⇒∗ s′ to denote that s evaluates to s′ via some
intermediate states. Now we formally define the notion of completeness and give an
example that shows that the set of abstract evaluation rules given in the previous section
is incomplete.

Definition 4.12 (Complete abstract execution relation). Let

r = s
s1 . . . sn

64

4.5. Properties of the Abstract Evaluation Relation

be an inference rule. We say that r is complete if

n⋃
i=1

Conc(si) ⊆ Next(Conc(s))

holds true, where Next(S) := {s′ ∈ ConcreteStates | ∃s ∈ S. s→ s′}. �

Example 4.16 (Incompleteness of Abstract Evaluation Rule 4.23). We pick the abstract
state s = (〈is(X, 1), >(X, 0) | g〉 , ∅, ∅, ∅,A∅), where X is a program variable. We see that
we can apply Abstract Evaluation Rule 4.23 to this state and receive the single resulting
abstract state

s′ = (〈>(Y, 0) | g〉 , {Y }, ∅, {Y },A{Y =1})

The substitution σ : Y → +(1, 0) conforms to s′, whence the concrete state s′ :=
〈>(+(1, 0), 0) | g〉 is represented by s′. However, there exists no concrete state s that is
represented by s, which is evaluated to s′. N

We have seen that our abstract semantics is incomplete. However, as long as the
abstract semantics is still sound, it is useful for the automated analysis of programs. We
now define the notion of soundness and show that the abstract evaluation relation that
we defined in the previous sections is sound.

Definition 4.13 (Sound abstract evaluation rule). Let

r = s
s1 . . . sn

be an inference rule. We say that r is sound if

n⋃
i=1

Conc(si) ⊇ Next(Conc(s))

holds true, where Next(S) := {s′ ∈ ConcreteStates | ∃s ∈ S. s→ s′}. �

We now proceed to show that all our previously defined rules for abstract evaluation
are sound.

Lemma 4.8 (Abstract execution is sound). All Abstract Evaluation Rules 4.1 through
4.26 are sound. �

Proof. We first show for each rule

r = s
s′1 . . . s′n

that, if r is applicable to some abstract state s, then for each s ∈ Conc(s) there exists a
state s′i such that s′ ∈ Conc(s′i), where s′ is the concrete state that s evaluates to.

Abstract Evaluation Rules 4.1 through 4.6 The proof of soundness of these rules can
be found in [GSSK+12, Appendix A].

65

4. Abstract Semantics

Abstract Evaluation Rule 4.7 Let s = (〈./(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.7 is applicable to it. Let γ be some sub-
stitution conforming to s, let s = sγ and let s′ be such that s → s′. If we ap-
ply Abstract Evaluation Rule 4.7 to s we receive s′ = (〈Err〉 ,G,U , E ,A) as the sin-
gle abstract successor state. Since Abstract Evaluation Rule 4.7 is applicable to s,
safeE,A(t1) ⊗ safeE,A(t2) ≡ false must hold true and hence either safeE,A(t1) ≡ false or
safeE,A(t2) ≡ false must hold true, according to the definition of ⊗. Due to Lemma 4.3,
we have either evalE(t1γ) = ⊥ or evalE(t2γ) = ⊥. In either case, we have s′ = 〈Err〉.
Since 〈Err〉 ∈ Conc(s′), Abstract Evaluation Rule 4.7 is sound.

Abstract Evaluation Rule 4.8 Let s = (〈./(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.8 is applicable to it. If we apply Abstract
Evaluation Rule 4.8 to s, we receive s′ = (〈T | G〉 ,G,U , E ,A) as the single abstract
successor state. Let γ be some substitution conforming to s, let s = sγ and let s′ be
such that s→ s′. Since γ conforms to s and since A |= (t1 ./ t2), we know that (t1 ./ t2)γ
is a tautology. Furthermore, due to safeE,A(t1) ≡ safeE,A(t2) ≡ true and Lemma 4.3
we have evalC(./ (t1, t2)γ ≡ true, whence s′ = 〈T | G〉. Since s′ ∈ Conc(s′), Abstract
Evaluation Rule 4.8 is sound.

Abstract Evaluation Rule 4.9 Let s = (〈./(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.9 is applicable to it. If we apply Abstract
Evaluation Rule 4.9 to s, we receive s′ = (〈G〉 ,G,U , E ,A) as the single abstract successor
state. Let γ be some substitution conforming to s, let s = sγ and let s′ be such that
s → s′. Since γ conforms to s and since A |= ¬(t1 ./ t2), we know that ¬(t1 ./ t2)γ
is a tautology. Furthermore, due to safeE,A(t1) ≡ safeE,A(t2) ≡ true and Lemma 4.3
we have evalC(./(t1, t2)γ ≡ false, whence s′ = 〈G〉. Since s′ ∈ Conc(s′), Abstract
Evaluation Rule 4.9 is sound.

Abstract Evaluation Rules 4.10 through 4.13 There are no new concepts in the proofs
of these rules. They amount to nothing more but a case distinction on γ, depending on
whether evalC(./(t1, t2)) ≡ false, evalC(./(t1, t2)) ≡ maybe or evalC(./(t1, t2)) ≡ true.
In each of these cases, we copy the proofs of soundness of Abstract Evaluation Rule 4.7,
Abstract Evaluation Rule 4.8 and Abstract Evaluation Rule 4.9, respectively and apply
Lemma 4.5 and Lemma 4.6.

Abstract Evaluation Rule 4.14 Let s = (〈is(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.14 is applicable to it. If we apply Abstract
Evaluation Rule 4.14 to s, we receive s′ = (〈Err〉 ,G,U , E ,A) as the single abstract
successor state. Let γ be some substitution conforming to s, let s = sγ and let s′ be
such that s→ s′. Since Abstract Evaluation Rule 4.14 is applicable to s, the statement
safeE,A(t2) ≡ false must hold true. Due to Lemma 4.3, we have evalE(t2γ) = ⊥. Thus,
we know that s′ = 〈Err〉 holds true. Since 〈Err〉 is a member of Conc(s′), Abstract
Evaluation Rule 4.14 is sound.

66

4.5. Properties of the Abstract Evaluation Relation

Abstract Evaluation Rule 4.15 Let s = (〈is(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.15 is applicable to it. If we apply Abstract
Evaluation Rule 4.15 to s, we receive s′ = (〈G〉 ,G,U , E ,A) as the single abstract suc-
cessor state. Let γ be some substitution conforming to s, let s = sγ and let s′ be such
that s → s′. Since Abstract Evaluation Rule 4.15 is applicable to s, it must hold that
t1 6∈ Z ∪ V. Also, we have safeE,A(t2) ≡ true and hence evalE(t2γ) = n 6= ⊥. Thus,
we know that mgu(t1γ, t2γ) = ⊥, which implies s′ = 〈G〉. Since s′ = 〈G〉 ∈ Conc(s′),
Abstract Evaluation Rule 4.15 is sound.

Abstract Evaluation Rule 4.16 Let s = (〈is(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.16 is applicable to it. If we apply Abstract
Evaluation Rule 4.16 to s, we receive s′1 = (〈Err〉 ,G,U , E ,A) and s′2 = (〈G〉 ,G,U , E ,A)
as the two abstract successor states. Let γ be some substitution conforming to s, let
s = sγ and let s′ be such that s→ s′. Since Abstract Evaluation Rule 4.15 is applicable
to s, it must hold that t1 6∈ Z ∪ V. Now assume that evalE(t2γ) = ⊥. Then we know
that s′ = 〈Err〉. Since 〈Err〉 ∈ Conc(s′1), Abstract Evaluation Rule 4.16 is sound in this
case. Assume now that evalE(t2γ) = n 6= ⊥. We then know that mgu(t1γ, t2γ) = ⊥,
and hence s′ = 〈G〉. Since s′ = 〈G〉 ∈ Conc(s′), Abstract Evaluation Rule 4.16 is sound
in this case. Hence, Abstract Evaluation Rule 4.16 is sound.

Abstract Evaluation Rule 4.17 Let s = (〈is(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.17 is applicable to it. If we apply Abstract
Evaluation Rule 4.17 to s, we receive s′ = (〈T | G〉 ,G,U , E ,A) as the single abstract
successor state. Let γ be some substitution conforming to s, let s = sγ and let s′ be
such that s → s′. Since Abstract Evaluation Rule 4.17 is applicable to s, it must hold
that t1 = n ∈ Z. Also, since A |= (t1 = t2), we know that t1γ = t2γ holds true.
Furthermore, since safeE,A(t2) ≡ true, we know that evalE(t2γ) 6= ⊥. We then know
that mgu(t1γ, t2γ) 6= ⊥, and hence s′ = 〈T | G〉. Since s′ = 〈T | G〉 ∈ Conc(s′), Abstract
Evaluation Rule 4.17 is sound.

Abstract Evaluation Rule 4.18 Let s = (〈is(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.18 is applicable to it. If we apply Abstract
Evaluation Rule 4.18 to s, we receive s′ = (〈G〉 ,G,U , E ,A) as the single abstract suc-
cessor state. Let γ be some substitution conforming to s, let s = sγ and let s′ be such
that s → s′. Since Abstract Evaluation Rule 4.18 is applicable to s, t1 = n ∈ Z must
hold true. Also, since A |= (t1 6= t2), we know that t1γ 6= t2γ holds true. Furthermore,
since safeE,A(t2) ≡ true, we know that evalE(t2γ) 6= ⊥ holds true. We then know that
mgu(t1γ, t2γ) = ⊥, and hence s′ = 〈G〉. Since s′ = 〈G〉 ∈ Conc(s′), Abstract Evaluation
Rule 4.18 is sound.

Abstract Evaluation Rules 4.19 through 4.22 Again, these proofs do not contain any
new ideas. We apply a simple case distinction to decide whether or not evalE(t2γ) = ⊥
holds true. If this is the case, we apply the same reasoning as in the proof of soundness

67

4. Abstract Semantics

of Abstract Evaluation Rule 4.14. If this is not the case, we apply the same reasoning
as in the proofs of soundness of Abstract Evaluation Rule 4.17 and Abstract Evaluation
Rule 4.18. We see in all three cases that the respective rule is sound.

Abstract Evaluation Rule 4.23 Let s = (〈is(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.23 is applicable to it. If we apply Abstract
Evaluation Rule 4.23 to s, we receive s′ = (〈T [t1 7→ Y] | G〉 ,G,U , E ∪ {Y },A ∪ {Y = t2})
as the single abstract successor state. Let γ be some substitution conforming to s,
let s = sγ and let s′ be such that s → s′. Since Abstract Evaluation Rule 4.23 is
applicable to s, it must hold true that t1 = n ∈ V. It must furthermore hold true that
evalE(t2γ) = n 6= ⊥. Thus, we have mgu(t1, t2) = (t1 7→ n) 6= ⊥. Hence, the concrete
successor state is of the form s′ = 〈T [t1 7→ Y] | G〉. Since the substitution γ′ : Y 7→ n is
conforming to s′, we have s′ ∈ Conc(s′). Thus, Abstract Evaluation Rule 4.23 is sound.

Abstract Evaluation Rule 4.24 Similar to earlier proofs, this one contains no new
ideas. We perform a case distinction based on whether or not evalE(t2γ) = ⊥. If this
is the case, we copy the proof of soundness from Abstract Evaluation Rule 4.14. If this
is not the case, we copy the proof of soundness from Abstract Evaluation Rule 4.23. In
both cases we see that Abstract Evaluation Rule 4.24 is sound.

Abstract Evaluation Rule 4.25 Let s = (〈is(t1, t2), T | G〉 ,G,U , E ,A) be an abstract
state such that Abstract Evaluation Rule 4.25 is applicable to it. If we apply Abstract
Evaluation Rule 4.25 to s, we receive s′1 = (〈T [t1 7→ Y] | G〉 ,G,U , E ∪ {Y },A ∪ {Y = t2})
and s′2 = (〈G〉 ,G,U , E ,A ∪ {t1 6= t2}) as the two abstract successor states. Let γ be some
substitution conforming to s, let s = sγ and let s′ be such that s → s′. Assume that
mgu(t1γ, t2γ) 6= ⊥. In this case we copy the proof of soundness from Abstract Eval-
uation Rule 4.23. This is possible since we know that safeE,A(t2) ≡ true and hence
evalE(t2γ) 6= ⊥. If it is the case that mgu(t1γ, t2γ) = ⊥ holds true, then we have
s′ = 〈G〉. Since t1γ and t2γ do not unify, we see that γ also conforms to s′2. Thus,
s′ ∈ Conc(s′), whence Abstract Evaluation Rule 4.25 is sound.

Abstract Evaluation Rule 4.26 Similar to earlier proofs, this one contains no new
ideas. We perform a case distinction based on whether or not evalE(t2γ) = ⊥. If this
is the case, we copy the proof of soundness from Abstract Evaluation Rule 4.14. If this
is not the case, we copy the proof of soundness from Abstract Evaluation Rule 4.25. In
both cases we see that Abstract Evaluation Rule 4.26 is sound.

Conclusion We have shown that all Abstract Evaluation Rules 4.1 through 4.26 are
sound. Thus, Lemma 4.8 holds true.

We now lift this result to the abstract evaluation relation defined by the previously
defined abstract evaluation rules.

68

4.5. Properties of the Abstract Evaluation Relation

Definition 4.14 (Sound abstract evaluation relation). Let ⇒ be the Abstract Evalu-
ation Relation as defined in Definition 4.11. We say that ⇒ is sound if the following
holds true:

for all s ∈ AbstractStates, s ∈ Conc(s), s′ ∈ ConcreteStates it holds true that

s→ s′ implies that there exists s′ ∈ AbstractStates

such that s⇒ s′ and s′ ∈ Conc(s′)

�

Lemma 4.9. The abstract evaluation relation ⇒ is sound. �

Proof. Let s be an abstract state and let s and s′ be concrete states such that s ∈ Conc(s)
and s→ s′. Furthermore, let

r = s
s′1 . . . s′n

be an abstract evaluation rule that is applicable to s. Then, according to Lemma 4.8,
there exists an s′ ∈ {s′1, . . . , s′n} such that s′ ∈ Conc(s). Thus, s ⇒ s′. Hence, Lemma
4.9 holds true.

We have shown that our abstract semantics is sound. In the next chapter, we construct
a termination analysis for programs written in our fragment of Prolog.

69

5. Termination Analysis

In the previous section, we have developed a sound abstract semantics for a fragment
of Prolog that contains not only the cut, but also built-in predicates for arithmetic
comparison and evaluation. In this chapter we are going to develop a termination analysis
for such programs. For this we are going to use the abstract semantics presented in the
previous chapter. In short, we are going to develop an algorithm that tries decides the
following decision problem:

Given some program in the considered fragment of Prolog and some func-
tion symbol f/n, do all queries of the form f(t1, . . . , tn), where t1 through
tn denote arbitrary terms, eventually terminate?

Since this problem is an instance of the halting problem, which was shown to be un-
decidable in [Tur36], our algorithm must necessarily stay incomplete. We will, however,
construct a sound algorithm that decides this question in as many cases as possible if
the given program terminates. If the given program does not terminate, however, the al-
gorithm will not show nontermination, but merely return that the termination behavior
of the program is unknown.

For this we are going to proceed in two steps. First, we are going to construct a
finite representation of all concrete evaluations starting with some query of the form
f(t1, . . . , tn). We call such a representation a termination graph. The construction of
such graphs is defined in Section 5.1.

We are then going to transform these graphs into another formalism, so-called integer
transition systems. The termination of such a transition system then implies the termi-
nation of all runs described by the termination graph. This construction as well as a
proof of its correctness is given in Section 5.2.

Finally, in Section 5.3, we briefly discuss the choices we made for the practical imple-
mentation of this analysis. We also point to [Str10] for a more detailed presentation of
the implementation.

The graph construction uses the construction from [GSSK+12] as its base, but extends
the construction in that publication in order to take arithmetic comparisons and eval-
uations into account. The reduction of a termination graph into an integer transition
system was inspired by a similar reduction to this formalism in [SGB+14]. The goal of
that work, however, was to develop a termination analysis for LLVM, which has a very
different semantics and thus a very different construction of termination graphs. Hence,
the extraction of information from those graphs differs widely from the extraction in this
work. This new construction of integer transition systems from termination graphs is a
major contribution of this thesis.

71

5. Termination Analysis

5.1. Termination Graphs

In Section 4 (Abstract Semantics), we introduced a set of rules that allow us to construct
a tree of abstract program states from a given program and a starting query. However,
as we have seen in Example 4.9, this abstract semantics may produce infinite runs in
the same manner that the concrete evaluation of a term would. Thus, it is not useful to
simply evaluate the starting query abstractly in order to analyze it for termination. In
this section we instead construct a so-called termination graph based on this semantics.
The nodes of this graph are abstract states. Thus, we use the terms state and node
interchangeably in the remainder of this section.

We start this section by defining sets of potential outgoing edges for each state. Some
of these edges are based on the abstract semantics of Prolog and correspond directly to
steps of the inference algorithm. These edges are defined in Section 5.1.1. Other edges
do not correspond to transitions of the semantics, but merely serve the construction
of a finite graph. These edges are defined in Section 5.1.2 and Section 5.1.3. Finally,
the complete construction of the termination graph is detailed in pseudocode in Section
5.1.4.

A similar graph construction appeared previously in [GSSK+12], parts of which we
use for our construction. We extend this graph construction, however, in order to handle
the additional semantic rules that we introduced in the previous chapter.

5.1.1. Abstract Semantics

The basic idea of a termination graph is to represent the tree of abstract states induced
by the abstract evaluation relation ⇒. In order to simplify the transformation into
integer transition systems later on, we annotate the edges of this tree with information
about the abstract evaluation rule that is applicable to this state. In this section we
discuss the edges of the graph that correspond directly to the abstract semantics.

The simplest abstract evaluation rules are those that can be applied based purely on
the syntax of the current state and do not use any additional information stored in the
knowledge base. For these rules, we do not need to add any information to the graph,
but we can connect the original state and the resulting state with a simple edge.

Definition 5.1 (Simple edges). Let s be an abstract state to which Abstract Evaluation
Rule 4.1, Abstract Evaluation Rule 4.2, Abstract Evaluation Rule 4.4, Abstract Evalua-
tion Rule 4.5, or Abstract Evaluation Rule 4.6 is applicable and let s′ be the single state
for which s⇒ s′ holds. We define the simple edges of s as

SimpleEdges(s) := {(s, s′)}

�

Example 5.1 (Simple edges). We pick the abstract state

s := (〈� | g〉 , ∅, ∅, ∅,A∅)

72

5.1. Termination Graphs

The only abstract rule that is applicable to s is Abstract Evaluation Rule 4.1, the
application of which yields s′ = (〈g〉 , ∅, ∅, ∅,A∅).

The simple edge of s is formally denoted as

SimpleEdges(s) = ((〈� | g〉 , ∅, ∅, ∅,A∅), (〈g〉 , ∅, ∅, ∅,A∅))

We provide a graphical notation of this edge in Figure 5.1.

(〈� | g〉 , ∅, ∅, ∅,A∅)

(〈g〉 , ∅, ∅, ∅,A∅)

Figure 5.1.: The simple edge of (〈� | g〉 , ∅, ∅, ∅,A∅)

N

If we can apply Abstract Evaluation Rule 4.3 to unify two terms, we denote the
unifying substitution as an annotation on the edge. We call edges that are annotated
with such a substitution unification edges.

Definition 5.2 (Unification edges). Let s be an abstract state to which Abstract Eval-
uation Rule 4.3 is applicable and let s′succ and s′back be the respective resulting states
such that s⇒ s′succ and s⇒ s′back hold. Furthermore, let σ be the unifying substitution
of h and t that is applied to s to receive s′succ . We define the unification edges of s as

UnificationEdges(s) := {(s, s′succ , σ), (s, s′back ,⊥)}

�

Example 5.2 (Unification edges). We pick the abstract state

s := (
〈

(X, f(X) | g)f(Y) :- �
〉
, ∅, ∅, ∅,A∅)

The only abstract rule that is applicable to s is Abstract Evaluation Rule 4.3, which
yields ssucc = (〈f(f(Y)) | g〉 , ∅, ∅, ∅,A∅) and sback = (〈g〉 , ∅, ∅, ∅,A∅).

The unification edges of s are formally denoted as

UnificationEdges(s) = {(s, ssucc , X 7→ Y1, Y 7→ Y1), (s, sback ,⊥)}

These edges are shown graphically in Figure 5.2.
N

There are two large sets of semantic rules for which we still need to define rules. These
are the rules for evaluation of arithmetic comparisons as well as those for the evaluation
of the is-predicate. We start with the edges for arithmetic comparison. For these, we
denote the arithmetic comparison that is assumed to succeed on the edge.

73

5. Termination Analysis

(
〈
(X, f(X) | g)f(Y) :- �

〉
, ∅, ∅, ∅,A∅)

〈f(f(Y)) | g〉 , ∅, ∅, ∅,A∅) (〈g〉 , ∅, ∅, ∅,A∅)

X 7→ Y1, Y 7→ Y1 ⊥

Figure 5.2.: The unification edges of (
〈
(X, f(X) | g)f(Y) :- �

〉
, ∅, ∅, ∅,A∅)

Definition 5.3 (Comparison edges). Let s be an abstract state to which one of the
abstract evaluation rules from Abstract Evaluation Rule 4.7 through Abstract Evaluation
Rule 4.13 is applicable, let s′err , s′succ , and s′fail be the states resulting from the application
of the abstract evaluation rule, such that s ⇒ s′err , s ⇒ s′succ , and s ⇒ s′fail hold. We
write s′ = ⊥ if these states are not produced by the applicable rule. Furthermore, let
t1 ./ t2 be the comparison that is evaluated in s.

We then define the comparison edges of s as

ComparisonEdges(s) := {(s, s′err ,⊥) | s′err 6= ⊥}
∪ {(s, s′succ , (t1 ./ t2)) | s′succ 6= ⊥}
∪ {(s, s′fail ,¬(t1 ./ t2)) | s′fail 6= ⊥}

�

Example 5.3 (Comparison edges). We pick the abstract state

s := (〈X > 3, f | g〉 , ∅, ∅, ∅,A{X=2})

The only abstract evaluation rule that is applicable to s is Abstract Evaluation Rule
4.12, which yields the two abstract states serr = (〈Err〉 , ∅, ∅, ∅,A{X=2}) and sfail =
(〈g〉 , {X}, ∅, {X},A{X=2}) as the successor states of s.

The comparison edges of s are formally denoted as

ComparisonEdges(s) = {(s, serr ,⊥), (s, sfail , X ≤ 3)}

Note that s only has two comparison edges, since Abstract Evaluation Rule 4.12 only
produces two successors of s. These edges are shown graphically in Figure 5.3.

(〈X > 3, f | g〉 , ∅, ∅, ∅,A{X=2})

(〈Err〉 , ∅, ∅, ∅,A{X=2}) (〈g〉 , {X}, ∅, {X},A{X=2})

⊥ X ≤ 3

Figure 5.3.: The comparison edges of s := (〈X > 3, f | g〉 , ∅, ∅, ∅,A{X=2})

N

74

5.1. Termination Graphs

The final set of abstract evaluation rules for which we need edges are those that
are used to evaluate the is-predicate, namely Abstract Evaluation Rule 4.14 through
Abstract Evaluation Rule 4.26. For these, we denote both the relation that is assumed
to succeed as well as the substitution that we applied to the remainder of the state on
the edge.

Definition 5.4 (Arithmetic assignment edges). Let s be an abstract state to which one
of the abstract evaluation rules from Abstract Evaluation Rule 4.14 through Abstract
Evaluation Rule 4.26 is applicable, let s′err , s′succ , and s′fail be the states resulting from the
application of the abstract evaluation rule, such that s⇒ s′err , s⇒ s′succ , and s⇒ s′fail
hold true. We write s′ = ⊥ if either of these states are not produced by the applicable
rule. Furthermore, let σ be the substitution that is applied to s in the case that the
evaluation and unification both succeed.

We then define the arithmetic assignment edges of s as

ArithmeticAssignmentEdges(s) := {(s, s′err ,⊥,⊥) | s′err 6= ⊥}
∪ {(s, s′succ , (t1 = t2), σ) | s′succ 6= ⊥}
∪ {(s, s′fail ,⊥,⊥) | s′fail 6= ⊥}

�

Example 5.4 (Arithmetic assignment edges). We pick the abstract state

s := (〈is(X,Y), f(X) | g〉 , {Y }, ∅, {Y },A∅)

The only abstract rule that is applicable to s is Abstract Evaluation Rule 4.25, which
yields the two abstract successor states ssucc = (〈f(Z) | g〉 , {Y, Z}, ∅, {Y,Z},A{Z=Y })
and sfail = (〈g〉 , {Y }, ∅, {Y },A∅) as the successor states of s.

The arithmetic assignment edges of s are formally denoted as

ArithmeticAssignmentEdges(s) = {(s, ssucc , X = Y,X 7→ Z, Y 7→ Z), (s, sfail ,⊥,⊥)}

Note that s only has two arithmetic assignment edges, since Abstract Evaluation Rule
4.12 only produces two successors of s. These edges are shown graphically in Figure 5.4.

(〈is(X,Y), f(X) | g〉 , {Y }, ∅, {Y },A∅)

(〈f(Z) | g〉 , {Y,Z}, ∅, {Y,Z},A{Z=Y }) (〈g〉 , {Y }, ∅, {Y },A∅)

X = Y,
X 7→ Z, Y 7→ Z

⊥,⊥

Figure 5.4.: The arithmetic assignment edges of
s := (〈(X > 3, f | g)〉 , {Y }, ∅, {Y },A{X=2})

N

75

5. Termination Analysis

These edges allow us to construct a graph based completely on the abstract interpre-
tation of a term. However, using only these edges we would not receive a finite graph in
nearly all cases, since an infinite concrete evaluation implies an infinite abstract evalua-
tion. Thus, the construction of the graph would never terminate.

In order to tackle this, we introduce additional rules in the following sections that
allow us to construct such a finite graph. We start by introducing rules that allow us to
avoid repeating very similar states in the following section.

5.1.2. Instantiation and Generalization

In this section we define a set of edges for each state s that allows us to denote in the
graph that we have already seen a similar node. This set of edges is necessary in order
to construct a finite graph. We call these edges instance- and generalization edges.

In the earlier work of [GSSK+12], these edges were defined as inference rules of the
abstract semantics. In this thesis, however, we separate inference rules, which define
an abstract semantics, from these instance- and generalization edges in order to have a
general-purpose semantics, which is not specifically geared towards termination analysis.

First, we introduce instance edges that allow us to return to a more general abstract
state.

Example 5.5 (Infinite graph without instance edges). Consider Program 5.1 and the
initial query q = f(X). We construct the graph shown in Figure 5.5a by using the simple
edges and the unification edges of each state. Note that the resulting graph is infinite.
Thus, an algorithm that tries to construct this graph explicitly will never terminate.

N

Program 5.1 Example for necessity of instance edges

f(X) :- f(f(X)).

In Figure 5.5a we see that the set of states represented by (〈f(f(Y))〉 , ∅, ∅, ∅,A∅) is
a subset of those represented by the earlier state (〈f(X)〉 , ∅, ∅, ∅,A∅). So, instead of
continuing the use of semantic edges when reaching the former state, we could stop at
this point, since we already have semantic edges in the graph that describe the evaluation
of all its concretizations.

We formalize this intuitive notion of more precise states by using instance edges. Two
abstract states s and s′ are connected with an instance edge, if s represents a subset of
the concrete states represented by s′. If this is the case, we say that s is an instance of
s′.

Definition 5.5 (Instance). Let

sinst = (Sinst ,Ginst ,Uinst , Einst ,Ainst)

and
sgen = (Sgen ,Ggen ,Ugen , Egen ,Agen)

76

5.1. Termination Graphs

(〈f(X)〉 , ∅, ∅, ∅,A∅)

(
〈
f(X)f(X) :- f(f(X))

〉
, ∅, ∅, ∅,A∅)

(〈f(f(Y))〉 , ∅, ∅, ∅,A∅)

(
〈
f(f(Y))f(X) :- f(f(X))

〉
, ∅, ∅, ∅,A∅)

. . .

X 7→ Y, X 7→ Y

(a) Without instance rule

(〈f(X)〉 , ∅, ∅, ∅,A∅)

(
〈
f(X)f(X) :- f(f(X))

〉
, ∅, ∅, ∅,A∅)

(〈f(f(Y))〉 , ∅, ∅, ∅,A∅)

X 7→ Y, X 7→ Y

X 7→ f(Y)

A

B

C

(b) With instance rule

Figure 5.5.: Graph induced by the query f(X) on Program 5.1

be abstract states. We say that sinst is an instance of sgen if there is a substitution
σ : T (sgen)→ TermsΣ\V,V(sinst)∪T (sinst) such that all of the following conditions hold:

Sgenσ = Sinst T (Ggenσ) ⊆ Ginst Ugenσ ⊆ Uinst

∀X ∈ Egen . safeEinst ,Ainst
(Xσ) = true

∀δ ∈ Ainst . evalE ◦ δ ◦ σ ∈ Agen

We call σ the instantiation substitution. �

The four former conditions can be checked automatically quite easily, as they all
amount to iterations over finite sets. The latter condition, however, poses a challenge
for the implementation of this analysis, as arithmetic states are typically infinite. We
discuss the implementation of this check in Section 5.3.

Example 5.6 (Instantiation). Consider the two abstract states

sgen =
(
〈f(X1), g(X2)〉 , {X1, X2}, ∅, {X1},A{X1>0}

)
and

sinst =
(
〈f(−(Y1, 1)), g(g(Y2)))〉 , {Y1, Y2}, ∅, {Y1},A{Y1>0}

)
.

We show that sinst is an instance of sgen .

We pick σ := X1 7→ −(Y1, 1), X2 7→ g(Y2) and apply σ to f(X1), g(X2) to receive
f(−(Y1, 1)), g(g(Y2))). Thus, the first condition of instantiation holds true.

We also see that T ({X1, X2}σ) = T (−(Y1, 1), g(Y2)) = {Y1, Y2} and hence, the second
condition also holds true. The third condition amounts to the simple check ∅ ⊆ ∅, which
vacuously holds true.

77

5. Termination Analysis

The fourth condition holds true, since

safe{Y1},A{Y1>1}
(X1σ) = safe{Y1},A{Y1>1}

(−(Y1, 1)) = true

holds true.
Finally, let δ be a member of A{Y1>1}. Then δ : Y1 7→ n holds true for some n > 1.

Thus, δ ◦ σ maps X1 to −(n, 1) for some n > 1. This implies that evalE ◦ δ ◦ σ maps
X1 to n − 1. Since n > 1, we know that n − 1 > 0 holds true, whence evalE ◦ δ ◦ σ
maps X1 to some value larger than 0. Hence, evalE ◦ δ ◦ σ is a member of A{X1>0} for
all δ ∈ A{Y1>0}.

Since all five conditions of Definition 5.5 hold true, sinst is an instance of sgen . N

This definition allows us to detect states that are more precise states than those that
we have already created during the construction of the termination graph. It remains
to show that these conditions actually characterize the intuitive instance-relation.

Lemma 5.1 (Soundness of instantiation). Let sinst and sgen be abstract states such that
sinst is an instance of sgen . Then

Conc(sinst) ⊆ Conc(sgen)

holds true. �

Proof. Let s = (S,G,U , E ,A) and s′ = (S′,G′,U ′, E ′,A′) be abstract states and assume
that s is an instance of s′ with the instantiation substitution σ. Furthermore let sconc
be a concrete state in Conc(s). We show that s ∈ Conc(s′) holds true.

Since s ∈ Conc(s), there must exist a concretization γ that conforms to s such that
Sγ = s. As S′σ = S, we also have S′σγ = s. It remains to show that σγ conforms to s′.
For this, we show the four conditions from Definition 4.6 in order.

We first show that V(Xσγ) = ∅ holds true for all X ∈ G′. For this, let X ∈ G′. We see
that due to the definition of an instantiating substitution, we have T (Xσ) ⊆ G. Now let
Y ∈ T (Xσ). Due to the previous statement, we know that Y ∈ G and hence T (Y γ) = ∅,
as γ conforms to s. Hence, we have T (Xσγ) = ∅.

The next condition to show is mgu(t1σγ, t2σγ) = ⊥ for all pairs of terms (t1, t2) ∈ U ′.
Due to the definition of instantiating substitutions, we know that (t1σ, t2σ) ∈ U holds
true as well. Since γ conforms to s, we can conclude that mgu(t1σγ, t2σγ) = ⊥ holds
true.

We now continue to show that evalE(Xσγ) 6= ⊥ holds true for all X ∈ E ′. We
know that safeE,A(Xσ) ≡ true, since σ is a instantiating substitution. Hence, we can
conclude that evalE(Xσγ) 6= ⊥ holds true, due to Lemma 4.3, or, more precisely, due
to Statement 4.1.

The final condition that we have to show is that (evalE ◦ σγ)
∣∣
T is an element of A′.

Since σγ is just a shorthand for γ ◦ σ, this amounts to showing that (evalE ◦ γ ◦ σ)
∣∣
T

is an element of A′. We know that γ conforms to s, which implies that (evalE ◦ γ)
∣∣
T

is a member of A, due to Definition 4.6. Furthermore, since s is an instance of s′,
it holds true that evalE ◦ δ ◦ σ is a member of A′ for all δ ∈ A. We combine these

78

5.1. Termination Graphs

two facts and receive that evalE ◦
[
(evalE ◦ γ)

∣∣
T
]
◦ σ is a member of A′. Due to the

restriction of evalE ◦γ to T , the resulting function evalE ◦
[
(evalE ◦ γ)

∣∣
T
]
◦σ is undefined

on all X 6∈ T . We can extend the restriction to the whole function and write it as
(evalE ◦ evalE ◦ γ ◦ σ)

∣∣
T . Since evalE is idempotent1, we can drop its second application

and receive that evalE ◦
[
(evalE ◦ γ)

∣∣
T
]
◦σ = (evalE ◦ γ ◦ σ)

∣∣
T holds true. Finally, since

we have previously argued that the former function is a member of A′, the latter function
is a member of it as well. Thus, we have shown that σγ fulfills the final condition of the
definition of conforming substitutions.

We have shown that σγ fulfills all conditions of Definition 4.6 and hence, that σγ
conforms to s′. Hence, we conclude that s ∈ Conc(s′) holds true. Since we picked s
arbitrarily from Conc(s), we have shown that Lemma 5.1 holds true.

If we include such an instance edge in the graph, we label it with the instantiating
substitution.

Definition 5.6 (Instance edge). Let sinst and sgen be abstract states. We define the
instance edge between sinst and sgen as

InstanceEdge(sinst , sgen) =

{(sinst , sgen , σ) | sinst is an instance of sgen with the instantiating substitution σ}

�

Example 5.7 (Finite graph with instance edges). Consider Program 5.1 again. We
construct the graph shown in Figure 5.5b using the simple edge of node A and the
unification edge of node B. Instead of using the simple edge of node C, we instead
use the instance edge of nodes C and A with the instantiating substitution X 7→ f(Y).
Thus, we have constructed a finite termination graph that represents the infinite abstract
evaluation of Program 5.1. N

Although instantiation edges are the major concept that we use to construct finite
graphs, it is not sufficient to only take these edges back to already existing, more general
states in the graph. Such edges only allow us to go back to strictly more general states
that we already visited, but not to any “similar” states.

Example 5.8 (Infinite graph without generalization edges). Consider Program 5.2. We
construct the graph shown in Figure 5.6a from the starting query f(0). There exists no
pair of nodes between which an instance edge can be drawn, since the arithmetic state
in every state fixes a precise value n for the single argument of the function symbol f .
Since neither X = n implies X = n+ 1, nor vice versa, it is not possible to connect two
such states with an instance edge. N

1 This is due to the fact that evalE maps terms to Z. According to Definition 3.8, it also maps integers
to themselves. Thus, multiple applications of this function do not change the result, hence it is
idempotent.

79

5. Termination Analysis

Program 5.2 Example for necessity of generalization edges

f(X) :- is(Y,X+1), f(Y).

(
f(X), {X}, ∅, {X},A{X=0}

)
. . .

(
f(Y), {Y }, ∅, {Y },A{Y =1}

)
. . .

(
f(Z), {Z}, ∅, {Z},A{Z=2}

)
. . .

A

B

C

(a) Without generalization rule

(
f(X), {X}, ∅, {X},A{X=0}

)
. . .

(
f(Y), {Y }, ∅, {Y },A{Y =1}

)

(
f(Z), {Z}, ∅, {Z},A{Z≥0}

)
. . .

X 7→ Z

Y 7→ Z

A

B

C

(b) With generalization rule

Figure 5.6.: Graph of Program 5.2

In order to go back from a state to a similar one, we first need to construct a state that
is more general than both of them. We can then use the known concept of instantiation
to transition to the more general state. We formalize this idea using generalization edges.
These edges connect two similar states to such a more general state.

Definition 5.7 (Generalization edges). Let sinst , s
′
inst and sgen be abstract states. We

define the generalization edges of sinst , s
′
inst and sgen as

GeneralizationEdges(sinst , s
′
inst , sgen) :=

{(sinst , sgen , σ) | sinst is an instance of sgen with the instantiating substitution σ}
∪ {(s′inst , sgen , σ′) | s′inst is an instance of sgen with the instantiating substitution σ′}

�

This definition poses a problem to the practical implementation of this analysis, since
there are infinitely many states sgen that generalize existing states. In our implemen-
tation, we use heuristics for finding suitable states to generalize existing ones to. The
use of these heuristics in the construction of the termination graphs is shown in Section
5.1.4. We briefly discuss the heuristics themselves in Section 5.3.

80

5.1. Termination Graphs

Example 5.9 (Finite graph with generalization edges). Consider Program 5.2 again.
Using generalization edges we can now construct the graph shown in Figure 5.6b, where
we generalize states A and B to state C. We draw these generalization edges in red. N

In this section we have defined the concepts of instantiation and generalization that
allow us to “backtrack” to already visited, similar states in the graph. However, these
concepts are only useful if there already exist states that are candidates for instantiation
or generalization. There may also occur situations in which no such states ever exist. In
the next section, we treat such cases.

5.1.3. Splitting and Parallelization

In the previous section, we introduced instance- and generalization edges that allow
us to transition to an existing state if this existing state is similar enough to a newly
constructed one. The notion of “similar enough” was defined using the instantiation-
relation.

This relation is very useful in a lot of cases, but there is one major downside to it. It
requires that the two states have the same number of goals and all goals have the same
number of terms in the two states. This is a problem in programs that do not terminate
due to unbounded growth of the number of goals or the number of terms in a goal.

Example 5.10 (Infinite graph without split edges). Consider Program 5.3. We con-
struct the graph shown in Figure 5.7a from this program and the starting query f(X).
This graph is infinite, since every new application of the single rule of the program adds
one more term g(X) to the goal. Thus, the single goal of the state grows without any
bounds and we will receive an endless sequence of states.

Program 5.3 Example for necessity of split edges

f(X) :- f(X), g(X).

It is not possible to apply instance- or generalization edges, since there is no way to
create or remove terms or goals using substitutions. Since each node has one term more
than the previous one, there is no instantiating substitution for any pair of states. Also,
for the same reason, there does not exist a state that we could generalize two states
to. N

In order to create a finite graph even in these situations, we use the concept of a
split. The idea is to split off the first term of the first goal of a state in order to treat it
separately.

Without such edges, each path through the graph corresponds to an abstract evalua-
tion. At split edges, however, an evaluation is represented by a traversal of the left-hand
successor of the node first, after which the right-hand successor of the node has to be
traversed.

81

5. Termination Analysis

(〈f(X)〉 , ∅, ∅, ∅,A∅)

. . .

(〈f(X), g(X)〉 , ∅, ∅, ∅,A∅)

. . .

(〈f(X), g(X), g(X)〉 , ∅, ∅, ∅,A∅)

. . .

(a) Without split edges

(〈f(X)〉 , ∅, ∅, ∅,A∅)

. . .

(〈f(X), g(X)〉 , ∅, ∅, ∅,A∅)

(〈f(X)〉 , ∅, ∅, ∅,A∅) (〈g(X)〉 , ∅, ∅, ∅,A∅)

. . .

id

A

B

C D

(b) With split edges

Figure 5.7.: Graph of Program 5.3

Example 5.11 (Reconstructing executions from split edges). Consider the abstract
state

s := (〈f(X,Y), g(X,Y)〉 , {X}, ∅, ∅,A∅)

which we split up into the abstract states

s′1 = (〈f(X,Y)〉 , {X}, ∅, ∅,A∅)
s′2 = (〈g(X,Y)〉 , {X}, ∅, ∅,A∅)

This split is shown graphically in Figure 5.8, where the split-edges are drawn in yellow.
In order to model the evaluation of node A, we first have to descend into node B. If the
evaluation of this node finishes at some point, we have to return to node B and descend
into node C. This order of evaluation is denoted by the dashed path.

Note that we first show termination of state B and only if we could successfully show
the termination of this state, we continue to show the termination of state C. Thus,
when we analyze state C we may use the assumption that we have already shown that
state B terminated. N

In this example we have simply copied the knowledge base of the split state to the two
split results. In general, however, this would be unsound, as we can see in the following
example.

Example 5.12. Consider the abstract state

s := (〈is(X, 2), is(X, 3)〉 , ∅, ∅, ∅,A∅)

82

5.1. Termination Graphs

(〈f(X,Y), g(X,Y)〉 , {X}, ∅, ∅,A∅)

(〈f(X,Y)〉 , {X}, ∅, ∅,A∅) (〈g(X,Y)〉 , {X}, ∅, ∅,A∅)

. . .

A

B C

Figure 5.8.: Example of a split

which only represents the concrete state 〈f(2, X), is(X, 3)〉. This concrete state evaluates
as follows:

〈is(X, 2), is(X, 3)〉 → 〈is(2, 3)〉 → 〈ε〉

If we split the abstract state s as we did in the previous example, we would receive the
two abstract states

s′1 = (〈is(X, 2)〉 , ∅, ∅, ∅,A∅)
s′2 = (〈is(X, 3)〉 , ∅, ∅, ∅,A∅)

which does not fit our intuition about the split anymore, since, after evaluating is(X, 2) we
end up in 〈is(2, 3)〉. This state is not represented by s′2, since X is a program variable. N

The previous example showed us that we need to model the effect that the evaluation
of the first term of the first goal of the abstract state has on the remainder of the goal.
In order to do so, we replace all those variables that are effected by the evaluation of
this predicate by fresh term variables. This models the fact that the evaluation of the
first predicate may assign arbitrary terms to its arguments.

In order to make this construction more precise, we additionally use a function for
groundness analysis. This function takes a program and a predicate as well as a set
of input variables that are known to be ground. It returns those variables that are
known to be ground after the evaluation of the predicate. Such a function is presented,
for example, in [HK03]. In order to preserve soundness of the transformation of the
resulting graph into integer transition systems later on, we only define these edges for
states containing only a single goal.

Definition 5.8 (Split states, split edges). Let s = (〈t, T 〉 ,G,U , E ,A) be an abstract
state. We define the split states ssplit and s′split of s as

ssplit := (〈t〉 ,G,U , E ,A)

s′split := (〈Tσ〉 ,Gσ ∪NextG(t,G)σ,Uσ, Eσ,Aσ)

83

5. Termination Analysis

where NextG(t,G) is a function returning those abstract variables that are known to be
ground after the evaluation of t with the ground variables G and σ is a function that
replaces all variables with previously unused term variables.

We define the split edges of s as

SplitEdges(s) := {(s, ssplit), (s, s′split)}

�

Example 5.13 (Split edges). Consider Program 5.3 again. We construct the graph
shown in Figure 5.7b from the starting query f(X) by first using simple and evaluation
edges from node A and then using the split edges of node B. Using these split edges,
we split node B into nodes C and D. We can then use the instance edge of node C to
connect it back to node A with the identity function as the instantiating substitution.
The evaluation of node D can continue as usual, using simple, unification, instantiation,
generalization and split edges as needed. N

We have argued the soundness of this rule informally in the previous examples. It re-
mains to show its soundness formally with respect to termination analysis. This sound-
ness is formalized in the following statement.

Lemma 5.2 (Soundness of the split rule). Let s be an abstract state for which split
edges are defined and let (s, ssplit), (s, s

′
split) be its split edges. If s is nonterminating,

then either ssplit or s′split is nonterminating. �

Proof. Since s = (〈t, T 〉 ,G,U , E ,A) is nonterminating, there exists a nonterminating
concrete state sconc = 〈tγ, Tγ〉 that is a member of Conc(s), where γ is a substitution
that conforms to s. Consider the infinite sequence of concrete state s1 → s2 → . . . , with
s1 = sconc . It is then either the case that all si are of the form 〈T ′1, Tγγ′ | · · · | T ′i , Tγ〉
or that there is some first state of the form 〈Tγ〉.

In the former case, we see that the suffix Tγ is not changed during the remainder
of the evaluation. Hence, for each si = 〈T ′1, Tγ | · · · | T ′i , Tγ〉, the concrete state 〈tγ〉
evaluates to 〈T ′1 | · · · | T ′i 〉 holds true. Since there are an infinite number of such si, 〈tγ〉 is
nonterminating. Furthermore, since the knowledge bases of s and ssplit are identical and
since γ conforms to s, γ also conforms to ssplit . Hence, 〈tγ〉 is a member of Conc(ssplit),
whence this abstract state is nonterminating.

In the latter case we know that sconc = 〈tγ, Tγ〉 evaluates to 〈Tγγ′〉. The concrete
state 〈Tγγ′〉 is nonterminating due to our assumption. If this is the case, then s′split is

nonterminating, as we now show. Due to Lemma 5.3, σ−1γγ′ conforms to s′split , whence〈
Tσσ−1γγ′

〉
is a member of Conc(s′split). Furthermore, since 〈Tγγ′〉 is nonterminating,

and since σσ−1γγ′ = γγ′ holds true, we know that
〈
Tσσ−1γγ′

〉
is nonterminating.

Since this nonterminating state is a member of Conc(s′split), the abstract state s′split is
nonterminating.

In this proof we used the following additional lemma. Its proof can be found in
Appendix A.

84

5.1. Termination Graphs

Lemma 5.3. Let s = (〈t, T 〉 ,G,U , E ,A) be an abstract state, let NextG be a sound
groundness analysis function and let σ be a function that replaces all variables in 〈t, T 〉
with fresh term variables. Furthermore, let γ be some concretization of s. If 〈tγ, Tγ〉 eval-
uates to 〈Tγγ′〉, then σ−1γγ′ conforms to s′ = (〈Tσ〉 ,Gσ ∪NextG(t,G)σ,Uσ, Eσ,Aσ).

�

We have just seen how we can break up goals into their individual terms using split
rules. This solved a problem where a goal would grow without any bound. The same
thing may happen with the state itself, which consists of a sequence of goals, as we will
see in the following example.

Example 5.14 (Infinite graph without parallel edges). Consider Program 5.4. We
construct the graph shown in Figure 5.9a from this program. Note that this graph is
infinite, since every application of the case-rule results in another goal that is added to
the state. It is not possible to use instance- or generalization rules in order to make
this graph finite, since these rules cannot be applied to states with differing numbers of
goals.

Program 5.4 Example for necessity of parallel edges

f(X) :- f(X). f(X) :- g(X).

N

(〈f(X)〉 , ∅, ∅, ∅,A∅)

. . .

(
〈
f(X) | f(X)f(X) :- g(X)

〉
,

∅, ∅, ∅,A∅)

. . .

(
〈
f(X) | f(X)f(X) :- g(X) |

f(X)f(X) :- g(X)
〉
, ∅, ∅, ∅,A∅)

. . .

(a) Without parallel edges

(〈f(X)〉 , ∅, ∅, ∅,A∅)

. . .

(〈
f(X) | f(X)f(X) :- g(X)

〉
, ∅, ∅, ∅,A∅

)
(〈f(X)〉 , ∅, ∅, ∅,A∅)

(
〈
f(X)f(X) :- g(X)

〉
,

∅, ∅, ∅,A∅)

. . .

id

A

B

C
D

(b) With parallel edges

Figure 5.9.: Graph of Program 5.4

In order to handle such situations as in the previous example, we introduce parallel
edges. The idea behind these edges is to treat each goal in parallel. This is very similar

85

5. Termination Analysis

to the split edges defined previously. However, the evaluation of a complete goal does
not have an impact on other goals, except for the evaluation of a cut. Thus, we are
able to define the rule in a simpler way than the previous one, without relying on a
groundness analysis.

The only thing to consider for soundness is the reachability of cuts. We must not be
able to reach cuts in the resulting states that were not reachable in the original state.
For this, we first define active cuts and active marks, which we then use to define the
applicability of parallelization.

Definition 5.9 (Active cuts, active marks, parallel states, parallel edges). Let g be a
goal and let G be a sequence of goals. We define the active cuts of g as the set of those
m, for which g = T1 | !m | T2 holds true for some sequences of terms T1 and T2. We also
define the active marks of G as the set of those m, for which G = G1 | ?m | G2 holds
true for some sequences of goals G1 and G2. These definitions are taken directly from
[Str10, Definition 3.45].

Let s = (〈g | G〉 ,G,U , E ,A) be an abstract state. If the active cuts of g and the active
marks of G are disjoint, then we define the parallel states spar and s′par of s as

spar := (〈g〉 ,G,U , E ,A)

s′par := (〈G〉 ,G,U , E ,A)

Otherwise, we define spar = s′par = ⊥.
We then define the parallel edges of s as

ParallelEdges(s) := {(s, spar), (s, s′par) | spar 6= ⊥, s′par 6= ⊥}

�

Example 5.15 (Finite graph without parallel edges). Consider Program 5.4 again.
Using the starting query f(X), we construct the graph shown in Figure 5.9b from it.
First, we use the simple- and unification edges of node A and its successor to receive
node B. We use the parallel edges of node B and receive nodes C and D. Node C can be
lead back to node A using the instance edge of node C and node A directly. Afterwards,
we can continue constructing the graph from node D, which we can do using only simple-
and unification edges. N

We now have the possibility to split up sequences of goals and terms in order to treat
each element individually. There is, however, one technical detail to consider, which
concerns the cut and its treatment across parallel edges. It may be the case that, by
using parallel edges, we construct states that contain a cut, but no end-of-scope marker
for the cut.

Example 5.16 (Parallelizing the end-of-scope marker). Consider Program 5.5 and the
initial query q = f(X). Using a simple- and a unification edge, we receive the abstract
state

s = (〈!1 | ?1〉 , ∅, ∅, ∅,A∅)

86

5.1. Termination Graphs

If we decide at this point to use a parallel edge, we receive the graph shown in Figure
5.10a. We see that node A has no edges that we can use anymore, since we would need
to evaluate a cut without its corresponding end-marker.

Program 5.5 Example for parallelization of end-of-scope marker

f(X) :- !.

(〈f(X)〉 , ∅, ∅, ∅,A∅)

. . .

(〈!1 | ?1〉 , ∅, ∅, ∅,A∅)

(〈!1〉 , ∅, ∅, ∅,A∅) (〈?1〉 , ∅, ∅, ∅,A∅)

(〈�〉 , ∅, ∅, ∅,A∅)

A

(a) Without handling of cut without scope

(〈f(X)〉 , ∅, ∅, ∅,A∅)

. . .

(〈!1 | ?1〉 , ∅, ∅, ∅,A∅)

(〈!1〉 , ∅, ∅, ∅,A∅) (〈?1〉 , ∅, ∅, ∅,A∅)

(〈�〉 , ∅, ∅, ∅,A∅)(〈�〉 , ∅, ∅, ∅,A∅)

A

(b) With handling of cut without scope

Figure 5.10.: Parallelization of end-of-scope marker

N

Since the only way such a state may occur is by the application of the parallel rule,
there is a simple remedy. We can simply use an “imaginary” end-of-scope marker at the
end of the list of goals. This is formalized using cut edges.

Definition 5.10 (Cut edge). Let s = (〈!m, T | G〉 ,G,U , E ,A) be an abstract state. We
define the cut edge of s as

CutEdge(s) := {(s, s′) | G does not contain ?m},

where s′ is defined as (〈T 〉 ,G,U , E ,A). �

Example 5.17 (Parallelizing the end-of-scope marker). Consider again Program 5.5
and the starting query q = f(X). We construct the graph shown in Figure 5.10b from
this program and this query. Using the cut edge of node A, we are now able to finish
the construction of the graph at node A. N

We have now defined all the edges that we need for the construction of a complete
termination graph. In the next section, we are going to describe this construction in
detail.

87

5. Termination Analysis

(〈f(X)〉 , ∅, ∅, ∅,A∅)

(〈
f(X)f(X) :- g(X),h(X) | ?1

〉
, ∅, ∅, ∅,A∅

)
(〈g(X), h(X) | ?1〉 , ∅, ∅, ∅,A∅)

. . .

(〈g(f(X)), h(f(X)) | ?4 | ?3 | ?1〉 , ∅, ∅, ∅,A∅)
A

Figure 5.11.: Unfinished graph of Program 5.6

5.1.4. Construction of Termination Graphs

In the previous section, we have defined multiple types of edges for each state. Some of
these edges depend on the structure of the first term of the first goal of the state, such
as the simple and unification edges. Others depend on the relation between the state
and other states, such as the instance- and generalization edges. Again others are only
applicable if the state is large enough and split it up to be treated separately, such as
the split- and parallel edges. There is no state for which all of these edges are defined.
However, for nearly all states, more than one kind of edges is defined.

Program 5.6 Example for necessity of split edges

f(X) :- g(X), h(X). h(X) :- f(f(X)).

g(X).

Example 5.18 (Multiple outgoing edges for a state). Consider Program 5.6 and its
partially constructed graph in Figure 5.11. Node A has multiple outgoing edges.

First of all, Abstract Evaluation Rule 4.2 is applicable to A, which would result in the
abstract state

ssem :=
(〈

(g(f(X)), h(f(X)))
g(X) :- � | ?4 | ?3 | ?1

〉
, ∅, ∅, ∅,A∅

)
Node A also has split edges, which would result in the split states

ssplit = (〈g(f(X))〉 , ∅, ∅, ∅,A∅)
s′split = (〈h(f(X)) | ?4 | ?3 | ?1〉 , ∅, ∅, ∅,A∅)

It furthermore has parallel edges that allow us to construct the parallel states

spar = (〈g(f(X)), h(f(X))〉 , ∅, ∅, ∅,A∅)
s′par = (〈?4 | ?3 | ?1〉 , ∅, ∅, ∅,A∅)

88

5.1. Termination Graphs

This shows that there exist states for which multiple types of outgoing edges are
defined. In fact, this statement holds for most states. N

In order to analyze a program for termination, we need to construct a finite graph
explicitly using the edges that we have defined in the previous sections. We provide a
framework for an algorithm that does precisely that in this section. This framework
is used in our implementation of the termination analysis. Since we reuse parts of
the implementation from [Str10], we only provide the general framework and point to
that work for a precise description of the deterministic algorithm that we use for the
construction of the graph.

The most important requirement for the resulting graph is that it is finite and that
its construction terminates. The secondary requirement is that the graph shall be as
concise as possible. Furthermore it shall describe the potentially infinite set of abstract
states as precisely as possible.

The complete algorithm for the construction of a termination graph is formalized
as ConstructGraph(P, Q), which takes a program P and a query q and returns a
termination graph of the program and the query. We give a description of this algorithm
in pseudocode in Algorithm 5.1.

Algorithm 5.1 High level graph construction

function ConstructGraph(Prolog program P, Query q)
graph ← ({sqinit} , ∅)
workList ← [sqinit]
while workList is not empty do

currentState ← popped head of workList
allEdges ← GetAllEdges(currentState, graph)
pickedEdges ← PickEdges(allEdges, currentState, graph)
for all edge in pickedEdges do

newVertices ← graph.Vertices ∪ edge.Target
newEdges ← graph.Edges ∪ {edge}
if edge.Target is not contained in graph then

add edge.Target to workList

graph ← (newVertices,newEdges)

return graph

This algorithm is nothing but a simple construction of the graph using the standard
graph traversal. It starts with the initial state of the abstract evaluation as defined in
Definition 4.7 on page 37. From there it traverses the tree and constructs it along the
way using a standard graph traversal.

For every node we first construct a set of outgoing edges in GetAllEdges. Since
there are usually infinitely many such edges, especially regarding generalization edges,
this function constructs a finite set of sets of edges. We show our implementation of
GetAllEdges in Algorithm 5.2.

89

5. Termination Analysis

Algorithm 5.2 Construct possible edges from node

function GetAllEdges(Abstract state s, Graph G)
edges ← {SimpleEdges(s)}
edges ← edges ∪ {UnificationEdges(s)}
edges ← edges ∪ {ComparisonEdges(s)}
edges ← edges ∪ {ArithmeticAssignmentEdges(s)}
for all States s′ in G do

edges ← edges ∪ {InstanceEdge(s, s′)}
genCandidate ← GeneralizationCandidate(s, s′)
if genCandidate 6= ⊥ then

edges ← edges ∪ {GeneralizationEdges(s, s′, genCandidate)}
edges ← edges ∪ {SplitEdges(s)}
edges ← edges ∪ {ParallelEdges(s)}
return {E | E ∈ edges and E 6= ∅}

This implementation first constructs those edges that are based on the abstract se-
mantics. It then tries to find another already existing node s′ in the graph such that the
new node is an instance of this node and also stores all possible instance edges. It also
attempts to construct a more general state that describes both the newer state and the
already existing one in the function GeneralizationCandidate. If such a candidate
is found, the corresponding generalization edges are stored as well. The implementa-
tion finally checks if it is possible to split or parallelize the current node and stores the
corresponding edges, if this is the case.

The choice of GeneralizationCandidate is crucial for making this termination
analysis automatic. We reuse large parts of the choice of this function in [Str10, Section
6.2], but adapt it slightly to take the arithmetic components of the knowledge base into
account. This extension is described in more detail in Section 5.3.

Example 5.19 (Execution of GetAllEdges). We consider the graph under construc-
tion shown in Figure 5.11 again, which we call G. Let s be the node labeled with A,
namely

s = (〈g(f(X)), h(f(X)) |?4 |?3 |?1〉 , ∅, ∅, ∅,A∅)

As described in the previous example, this node’s simple edges, as well as its split- and
parallel edges are defined. Thus, the function GetAllEdges(s,G) returns the following
set of sets of edges:

returnValue = {{(s, ssem)}, {(s, ssplit), (s, s′split)}, {(s, spar), (s, s′par)}}

where ssem , ssplit , s
′
split , spar and s′par are defined as they were in the previous example.

N

Out of this selection of sets of edges, the function PickEdges picks a single set which
is then added to the graph, along with the new states that it connects to. For our
implementation, we chose a function that is heuristics-driven, which works very well

90

5.2. Transformation of Termination Graphs into Integer Transition Systems

in practice. The choice of this function does not impact the soundness of the graph
construction, but only its termination. Any reasonable implementation of PickEdges
should pick the edges in such a way that it guarantees termination of the complete con-
struction. Similarly to GeneralizationCandidate, we use large parts of the heuristic
presented in [Str10, Section 6.2] for this. We Its termination is shown in [Str10, Section
6.3].

Definition 5.11 (Termination graph). Let P be a program and let q be a query. We
call any finite graph that is constructed using Algorithm 5.1 using any implementation
of PickEdges a Termination Graph of P on q. �

Program 5.7 Computation of the factorial with cut (reprint of Program 2.3)

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

Example 5.20 (Termination graph of Program 2.3). Consider Program 2.3 on page 13,
which is reprinted as Program 5.7 for the sake of readability. We present a termination
graph of this program on fac(X1, X2) in Figure 5.12.

N

Each termination graph represents an overapproximation of the set of abstract runs
of the program. Thus, if there is a nonterminating run of the original program, this
run is also represented by the termination graph. It would be possible to analyze this
graph directly for such a run. We choose, instead, to transform it into the well-studied
formalism of an integer transition system, which we can then analyze for termination
using well-known off-the-shelf techniques.

5.2. Transformation of Termination Graphs into Integer
Transition Systems

We have defined a transformation of programs into termination graphs in the previous
section. The termination graph of a program on a query is a finite description of all
possible evaluations of the program on the query.

Thus, we now need a method to determine whether or not a given termination graph
describes a nonterminating run. In order to do so, we transform the termination graph
into an integer transition system, or ITS for short. An integer transition system is a very
simple formalism for which the problem of deciding termination has been well studied.
The idea is that termination of the ITS implies termination of all runs described by the
termination graph. This in turn implies termination of the program on the given query.

We first give a short introduction to the formalism of integer transition systems in the
following section. Following that, we show the construction of an ITS from a termination
graph in Section 5.2.2. In Section 5.2.3 we prove that the termination of this ITS implies
the termination of all runs of the program. Finally, we give a pointer to the literature

91

5. Termination Analysis

(〈fac(X1, X2)〉 , ∅, ∅, ∅,A∅)

(
〈
fac(X1, X2)fac(X,Y) :- >(X,0),... | fac(X1, X2)fac(X,Y) :- =:=(X,0),... | ?1

〉
,

∅, ∅, ∅,A∅)

(
〈
fac(X1, X2)fac(X,Y) :- >(X,0),...

〉
,

∅, ∅, ∅,A∅)
(
〈
fac(X1, X2)fac(X,Y) :- =:=(X,0),... | ?1

〉
,

∅, ∅, ∅,A∅)

(〈>(T1, 0), !1, fac(−(T1, 1), Y1),
is(T2, ∗(Y1, T1))〉 , ∅, ∅, ∅,A∅)

(〈ε〉 , ∅, {(fac(X1, X2),
fac(X, Y))}, ∅,A∅)

(
〈
fac(X1, X2)fac(X,Y) :- =:=(X,0),...

〉
,

∅, ∅, ∅,A∅) (〈?1〉 , ∅, ∅, ∅,A∅)

(〈Err〉 , ∅, ∅, ∅,A∅)

(〈!1, fac(−(T1, 1), Y1), is(T2, ∗(Y1, T1))〉 ,
{T1}, ∅, {T1},A{T1>0})

(〈ε〉 , {T1}, ∅,
{T1},A{T1≤0})

(〈=:=(T1, 0), is(T2, 1)〉 ,
∅, ∅, ∅,A∅)

(〈ε〉 , ∅, {(fac(X1, X2),
fac(X, Y))}, ∅,A∅)

(〈�〉 , ∅, ∅, ∅,A∅)

(〈fac(−(T1, 1), Y1), is(T2, ∗(Y1, T1))〉 ,
{T1}, ∅, {T1},A{T1>0})

(〈Err〉 ,
∅, ∅, ∅,A∅)

(〈is(T2, 1)〉 ,
{T1}, ∅, {T1},A{T1=0})

(〈�〉 , {T1}, ∅,
{T1},A{T1 6=0})

(〈ε〉 , ∅, ∅, ∅,A∅)

(〈fac(−(T1, 1), Y1)〉 , {T1},
∅, {T1},A{T1>0})

(〈is(T2, ∗(Y1, T1))〉 , {T1, Y1},
∅, {T1},A{T1>0})

(〈�〉 , {T1, T3}, ∅, {T1, T3},
A{T1=0,T3=1})

(〈ε〉 , {T1}, {(T2, 1)}},
{T1},A{T1=0})

(〈ε〉 , {T1}, ∅,
{T1},A{T1 6=0})

(〈Err〉 , {T1, Y1}, ∅,
{T1},A{T1>0})

(〈�〉 , {T1, Y1, T3}, ∅, {T1, Y1, T3},
A{T1>0,T3=Y1·T2})

(〈ε〉 , {T1, Y1}, {(T2,
∗(Y1, T1)}, {T1, Y1},A{T1>0})

(〈ε〉 , {T1, T3}, ∅, {T1, T3},
A{T1=0,T3=1})

(〈ε〉 , {T1, Y1, T3}, ∅, {T1, Y1, T3},
A{T1>0,T3=Y1·T2})

X1 7→ T1, X2 7→ T2,
X 7→ T1, Y 7→ T2

T1 > 0 T1 ≤ 0
X1 7→ T1, X2 7→ T2,
X 7→ T1, Y 7→ T2

T1 = 0

T1 6= 0

T3 = 1,
T2 7→ T3

X1 7→ −(T1, 1),
X2 7→ Y1

T3 = Y1 · T2,
T2 7→ T3

A

B

C D

E F G
H

I

J

K

L M

N

O

P

Q R

S

T U

V

W

X

Y

Z AA

ABAC

Figure 5.12.: A termination graph of Program 5.7 on fac(X1, X2)

on techniques for the termination analysis of ITSs in Section 5.2.4. We are, however,
going to use these techniques as a black box.

5.2.1. Integer Transition Systems

An integer transition system, or ITS for short, is a very simple formalism. Similar to
a Prolog program, such a system consists of a set of rules that describe admissible
transformations of terms. In contrast to Prolog, however, these rules may also have
a condition on the values of the integers occurring in the terms. It is only possible to
apply this rule if the condition evaluates to true.

Just like in Prolog, the only data structure appearing in integer transition systems
are terms. A computation of an integer transition system consists of a sequence of
applications of its rules, beginning with some given start term.

92

5.2. Transformation of Termination Graphs into Integer Transition Systems

Example 5.21 (Integer transition system). The following set of rules is an integer
transition system:

f(X,Y) → g(X − 1, Y) | X > 0
g(X,h(Y)) → f(X,Y) | true

Consider the term t1 := f(2, h(h(i))), where i is come constant. We can apply the
first rule to t1 to receive the term t2 = g(1, h(h(i))). We cannot apply the first rule to
t2, since t2 does not match the left-hand part of that rule. Instead, we can apply the
second rule to t2 to receive the term t3 = f(1, h(i)).

Another round of applications of the first and second rule yields the terms t4 =
g(0, h(i)) and t5 = f(0, i). At this point, there is no rule that we can apply anymore.
We cannot apply the first rule, since 0 > 0 does not hold true. We can also not apply the
second rule, as its left-hand side does not match the term t5. Hence, the computation
has terminated. N

An ITS is very similar to a Prolog program without cuts. Its basic building blocks
are nearly identical, although rules are of a much simpler form, since they only allow a
single term on both sides. The conditions consist of a finite conjunction of relations over
the integers and variables. The only variables that may occur in conditions are those
that already occur in the left- or right-hand side of a rule.

Definition 5.12 (Terms, conditions, rules). Let V be a countably infinite, nonempty
set of variables. We define the set ITSExpressionsV as the smallest superset of V ∪ Z
that fulfills the following two conditions:

For all e ∈ ITSExpressionsV it holds true that

{abs(e), sign(e), (−e)} ⊆ ITSExpressionsV

For all e1, e2 ∈ ITSExpressionsV it holds true that

{(e1 + e2), (e1 − e2), (e1 ∗ e2), (e1/e2), (e1 ∗ ∗e2), (e1 mod e2), (e1 rem e2)}
⊆ ITSExpressionsV

An element of ITSExpressionsV is called an expression. We omit brackets whenever
they are not necessary. The operators have their usual precedence.

Now let Σ be a signature as defined in Definition 3.1. We define the set ITSTermsΣ,V
as the smallest superset of Σ0 that fulfills the following condition:

For all n ∈ N0 and all f ∈ Σn it holds true that

t1, . . . , tn ∈ ITSTermsΣ,V ∪ ITSExpressionsV ∪ V ∪ Z implies

f(t1, . . . , tn) ∈ TermsΣ,V

The elements of ITSTerms are called terms. We write V(t) for any term t to denote
the variables contained in t.

93

5. Termination Analysis

Using this definition we proceed to define the set

ITSConditionsV := {e1 ./ e2 | e1, e2 ∈ ITSExpressionsV , ./ ∈ {=, 6=, <,>,≤,≥}}

the elements of which are called conditions. Similarly to terms, we denote the variables
occurring in a condition c by V(c)

We the finally define

ITSRulesΣ,V :=

{(l, r, C) ∈ ITSTerms2
Σ\V,V × 2ITSConditionsV | C is finite, ∀c ∈ C. V(c) ⊆ V(l) ∪ V(r)}

An element of ITSRulesΣ,V is called a rule. If (l, r, {c1, . . . , cn}) is a rule, we also write
l→ r | c1 ∧ · · · ∧ cn. If C is empty, we write l→ r | true. �

Using this set of rules, we can now define integer transition systems. An integer
transition system is nothing but a finite set of rules. In contrast to Prolog, the order
of the rules does not matter. Also in contrast to that language, we do not distinguish
between arithmetic expressions and their result. For example, we use +(1, 1) and 2
interchangeably even though they are, formally speaking, different terms.

Definition 5.13 (Integer transition system). Let Σ be a signature, let V be an infinite,
countable set of variables and let I be a subset of ITSRulesΣ,V . If I is finite, we call I
an integer transition system or ITS . �

As described previously, a term can be evaluated using the rules of an ITS . In order to
describe this formally, we use the notion of unification that we already used in Prolog.
We defined this notion in Definition 3.7. One major difference between Prolog and
integer transition systems is the fact that the intermediate terms occurring during an
evaluation may not contain variables in an ITS . At any point during the computation,
its current state can be described by a single ground term.

Definition 5.14 (Evaluation). Let t and t′ be ground terms and let I be an integer
transition system. We say that I evaluates t to t′ if there exists a rule (l, r, c) ∈ I and
a substitution δ : (V(r)\V(l))→ ITSTermsΣ\V,∅ such that the following three conditions
hold:

mgu(t, l) = σ 6= ⊥ t′ = rσδ ∀c ∈ C. cσ is a tautology

We write t→I t
′ in this case. If the integer transition system I is clear from the context,

we omit it and simply write t→ t′.
We furthermore write t →∗ t′ if there exists a finite sequence of terms π = t1, . . . , tn

such that t1 = t, tn = t′ and for all i ∈ [1;n), the statement ti → ti+1 holds true. If there
exists no rule that can be used to evaluate tn, we call π an evaluation of π. If π = t1, . . .
is an infinite sequence with ti →I ti+1 for all i ≥ 1, we also call it an evaluation. �

ITS are inherently indeterministic. This means that there exist terms that have
multiple evaluations over a single program.

94

5.2. Transformation of Termination Graphs into Integer Transition Systems

Example 5.22 (Indeterminism of ITS s). Let I be the following ITS :

f(X) → g(X) | true
f(X) → h(X) | true
h(X) → h(X) | true

The term f(0) has the two evaluations

π1 = f(0)→ g(0) π2 = f(0)→ h(0)→ h(0)→ . . .

N

Indeterminism cannot only be introduced through multiple applicable rules, but also
through free variables in the right-hand side of a rule. These free variables can be
instantiated to any ground term using the substitution δ from Definition 5.14. We
illustrate this in the following example.

Example 5.23 (Nondeterminism of ITS through free variables). Consider the ITS I
containing the single rule

f(X)→ f(Y) | Y > X

The term f(1) has infinitely many nonterminating evaluations, for example

π1 :=f(1)→ f(2)→ f(3)→ . . .

π2 :=f(1)→ f(3)→ f(5)→ . . .

N

Using this notion of evaluation, we can now define a terminating term. The idea is
that a term t is called terminating if every ground term that unifies with t only has finite
evaluations.

Definition 5.15 (Terminating term). Let t be a ground term and let I be an ITS . We
say that t is terminating if it only has finite evaluations with respect to I.

Now let t be a term that may contain variables. We then say that t is terminating
if for all substitutions σ the condition

tσ is ground implies that tσ is terminating with respect to I

holds true. �

Example 5.24 (Terminating and nonterminating terms). Consider the ITS consisting
of only the single rule f(X) → f(X + 1) | X > 0. The term f(0) only has a single
evaluation which consists only of itself. The term f(1) on the other hand has the infinite
evaluation f(1)→ f(2)→ Hence, the term f(0) is terminating, whereas f(1) is not.

Similarly, the term f(X) is nonterminating. Consider the substitution σ : X 7→ 1.
This substitution produces f(X)σ = f(1), which is nonterminating. Thus, the term
f(X) is nonterminating. N

95

5. Termination Analysis

(
〈f(X)〉 , {X}, ∅, {X},A{X<0}

)
(
〈>(X, 0), <(X, 0), f(X)〉 , {X}, ∅, {X},A{X<0}

)
(
〈>(X, 0)〉 , {X}, ∅, {X},A{X<0}

) (
〈<(X, 0), f(X)〉 , {X}, ∅, {X},A{X<0}

)
(
〈ε〉 , {X}, ∅, {X},A{X<0}

) (
〈f(X)〉 , {X}, ∅, {X},A{X<0}

)

id

A

B

C

D

E

F

Figure 5.13.: A termination graph of Program 5.8

5.2.2. Reduction of Termination Graphs to ITSs

In this section we define a construction of an ITS from a termination graph. Our
goal is that the termination of the ITS implies termination of all runs described by the
termination graph. Since the termination graph describes a superset of all the evaluations
of the original program, this in turn implies the termination of the original program.

The general idea is that we construct one rule of the ITS for each edge in the termi-
nation graph. One of the easiest constructions to translate a graph into an ITS would
just create a single function symbol fs with arity 0 for each state s and create rules of
the form fs → fs′ | true for all states s and s′ that are connected with an edge in the
graph. Its start term would be fsqinit . Even though this translation is sound, we imme-
diately see that it is not very powerful. In fact, this construction would fail to produce
a terminating ITS as soon as the termination graph contains a loop.

We obviously need to be able to argue about the values of the variables in the states
in order to model the behavior of Prolog more closely. Since all the terms occurring
during a computation of an ITS must be ground, we may include the ground variables
in the terms corresponding to states. We can then apply the substitutions that the edges
are annotated with to the terms in order to handle assignments. This, however, does
still not suffice to construct sufficiently powerful ITS s.

Program 5.8

f(X) :- X > 0, X < 0, f(X).

Example 5.25 (Termination in the presence of split edges). Consider Program 5.8 and
a simplified termination graph of this program on the query f(X) in Figure 5.13. In this
simplified example, we assume that we already know that X is some integer less than
0. Program 5.8 is obviously terminating, since there is no term that is both larger and
smaller than 0. However, using the previously described naive construction, we receive

96

5.2. Transformation of Termination Graphs into Integer Transition Systems

the following simplified ITS :

fA(X) → fB(X) | true
fB(X) → fE(X) | true
fE(X) → fF (X) | true
fF (X) → fA(X) | true

in which the term fA(X) is obviously nonterminating, even though all evaluations of
states represented by the abstract state A are terminating. N

The main problem with this construction is the handling of split nodes. Recall that
the idea behind these nodes is that we only need to show that its right-hand successor is
terminating under the assumption that the left-hand successor succeeded. Furthermore
recall that our idea for reconstructing an evaluation from a split node was to descend
into its left-hand successor first and only descend into the right-hand one if we return
from the left-hand one. This was shown in Example 5.11 on page 81.

In order to model this behavior in an ITS , we use two function symbols fsin and fsout
for each node s in the termination graph. We use the former to descend into the state
and we use the latter to model the ascent after we have reached the end of the evaluation
of the state. The arguments for these terms are those variables that are known to be
ground in the given state.

Definition 5.16 (Encoding states as terms). Let s = (S,G,U , E ,A) be an abstract
state. We assume that the variables contained in G are ordered.

We define two terms for s as follows:

term in(s) := f ins (G) termout(s) := fouts (G)

�

This idea is inspired by the encoding of states as terms presented in [GSSK+12, Def-
inition 12]. In that work, the arguments of termout(s) contained not only the ground
variables of s, but also those that were known to be ground after the evaluation of s.
These variables were determined by the same groundness analysis that we used in the
definition of the split rule in Definition 5.8. However, we have seen in the empirical
evaluation of this method that the construction presented in this thesis actually suffices
to show termination for large sets of programs.

Example 5.26. Consider the node A in the graph shown in Figure 5.12 on page 92.
Since we do not know of any ground variables in the state A, we have term in(A) = f inA ()
and termout(A) = foutA ().

In contrast to this, we know that the variables T1, Y1 and T3 are ground in node Z.
Hence, we get term in(Z) = f inZ (T1, T3, Y1) and termout(Z) = foutZ (T1, T3, Y1), if we order
the ground variables lexicographically. N

Using these two terms, we can now use ITS rules to describe paths through the graph
that correspond to the sequences of states that are visited during an execution of the

97

5. Termination Analysis

program. We want to ensure that, for each abstract state s, the termination of term in(s)
implies the termination of all concrete states described by s. Furthermore, we are going
to use termout(s) to backtrack up the graph after the successful evaluation of a node.

There are several types of nodes that we have to consider when defining ITS rules.
We mainly separate the nodes into categories based on the kind of edge that is attached
to it. If the outgoing edge of a node is a simple edge, we call the node a simple node.
We use similar nomenclature for all other kinds of edges that were discussed in Section
5.1.

The only two exceptions to this naming scheme are the abstract states of the form
s = (〈�〉 ,G,U , E ,A) and those without outgoing edges. The former nodes symbolize a
succeeding computation, so we call them success nodes. The latter nodes correspond
to failed evaluations. Thus, we call them failure nodes.

Example 5.27 (Types of nodes). Consider again the termination graph shown in Figure
5.12. We show the categories of all of its nodes in Table 5.1. N

Type of node Nodes of the type

Success node {N,R, V, Z}
Failure node {F, I,K,M,P, S,W,X, Y,AA,AB,AC}
Simple node {A,H, J}
Unification node {C,G}
Comparison node {E,L}
Arithmetic assignment node {Q,U}
Instance node {T}
Generalization node ∅
Split node {O}
Parallel node {B,D}

Table 5.1.: Node types occurring in Figure 5.12

Using this idea, the simplest nodes to encode are success and failure nodes. The former
nodes induce a “switch” from term in(s) to termout(s). The latter nodes do not induce
any rules, since they symbolize failed evaluations.

Definition 5.17 (ITS rules for success nodes). Let s = (〈�〉 ,G,U , E ,A) be an abstract
state. We define the ITS rules corresponding to s as follows:

SuccessRules(s) := {term in(s)→ termout(s) | true}

�

Example 5.28. Consider the termination graph shown in Figure 5.12. This graph has
the success nodes N , R, V and Z. Hence, we receive the following ITS rules from the
encoding of these nodes.

f inN ()→ foutN () | true f inR (T1)→ foutR (T1) | true

f inV (T1, T3)→ foutV (T1, T3) | true f inZ (T1, Y1, T3)→ foutZ (T1, Y1, T3) | true

98

5.2. Transformation of Termination Graphs into Integer Transition Systems

N

The definition of rules for failure nodes is quite simple as well. Since these nodes
symbolize failing computations, we do not even need to switch from the incoming to the
outgoing symbol. Instead, we just abort the computation at that point by not including
any rules at all.

Definition 5.18 (ITS rules for failure nodes). Let G = (V,E) be a termination graph
and let s ∈ V be a failure node. We define the set of ITS rules corresponding to s as
follows:

FailureRules(s) := ∅
�

It is quite easy to define rules for simple nodes. Recall that these edges to not have
any conditions or substitutions as their annotations. These states are terminating if
and only if their single successor state is terminating. Hence, it suffices to connect their
in-terms and their out-terms with those of their successor.

Definition 5.19 (ITS rules for simple nodes). Let G = (V,E) be a termination graph
and let s = (S,G,U , E ,A) ∈ V be a simple node with S 6= 〈�〉. Furthermore, let s′ be
the single abstract successor state of s.

We then define the ITS rules corresponding to s as follows:

SimpleRules(s) := {term in(s)→ term in(s′) | true,

termout(s
′)→ termout(s) | true}

�

Example 5.29 (ITS rules for simple nodes). Consider the termination graph shown in
Figure 5.12 again. This graph has the simple nodes A, H and J . The encoding of these
nodes as ITS rules yields the following rules:

f inA ()→ f inB () | true foutB ()→ foutA () | true

f inH ()→ f inN () | true foutN ()→ foutH () | true

f inJ (T1)→ f inO (T1) | true foutO (T1)→ foutJ (T1) | true

N

We handle unification nodes next. The outgoing edges of unification nodes denote
successful or failing unifications. Recall that there are two possibilities to evaluate such
states in the abstract semantics.

If we can infer that the unification is certainly failing, then we only produce a state
modeling this. This was formalized in Abstract Evaluation Rule 4.4.

The other possibility was that we were not able to infer certain failure of the evaluation.
In this case we produce two states, one for success of the unification and one for its failure.
For this we used Abstract Evaluation Rule 4.3. The edge leading to the success state
is labeled with the unification used. Using this information, we can easily encode such
nodes as ITS rules.

99

5. Termination Analysis

Definition 5.20 (ITS rules for unification and evaluation nodes). Let G = (V,E) be
a termination graph and let s ∈ V be a unification node that has the outgoing edges
(s, s′succ , σ) and (s, s′back ,⊥).

If s has both edges, we define the ITS rules corresponding to s as

UnificationRules(s) := {term in(s)→ term in(s′succ)σ | true,

termout(s
′
succ)σ → termout(s) | true,

term in(s)→ term in(s′back) | true,

termout(s
′
back)→ termout(s) | true}

If s only has the outgoing edge (s, s′back ,⊥), that is, if Abstract Evaluation Rule 4.4 was
applied to it, its UnificationRules contain only the former two rules. �

Example 5.30 (ITS rules for unification and evaluation nodes). We now encode the
unification nodes of the termination graph shown in Figure 5.12. The unification nodes
of this graph are C and G. The construction of ITS rules for these nodes yields the
following rules:

f inC ()→ f inE () | true foutE ()→ foutC () | true

f inC ()→ f inF () | true foutF ()→ foutC () | true

f inG ()→ f inL () | true foutL ()→ foutG () | true

f inG ()→ f inM () | true foutM ()→ foutG () | true

N

There are two more kinds of edges based on the abstract semantics for which we have
to define ITS rules. They are comparison edges and arithmetic assignment edges. We
handle the former one first.

For this definition we assume that s is a comparison node that has all three possible
successors. The three possible cases for an arithmetic comparison were an error during
the evaluation of the expressions that are to be compared, the success of the comparison,
and its failure. The edges leading to these cases are labeled with the comparison that has
to hold true in order to reach the respective case. Hence, we can use these comparisons
as conditions on the rules that encode the transitions.

Definition 5.21 (ITS rules for comparison nodes). Let G = (V,E) be a termina-
tion graph and let s ∈ V be a comparison node with the outgoing edges (s, s′err ,⊥),
(s, s′succ , t1 ./ t2) and (s, s′fail , t1 ./

′ t2).
We then define the ITS rules corresponding to s as follows:

ArithmeticRules(s) := {term in(s)→ term in(s′err) | true,

termout(s
′
err)→ termout(s) | true}

∪ {term in(s)→ term in(s′succ) | t1 ./ t2,
termout(s

′
succ)→ termout(s) | t1 ./ t2}

∪ {term in(s)→ term in(s′fail) | t1 ./′ t2,
termout(s

′
fail)→ termout(s) | t1 ./′ t2}

100

5.2. Transformation of Termination Graphs into Integer Transition Systems

If either of the outgoing edges do not exist, the corresponding ITS rules are removed
from ArithmeticRules(s). �

Example 5.31 (ITS rules for comparison nodes). Consider the termination graph shown
in Figure 5.12 again. We now encode the comparison nodes E and L of this graph. Since
both of these comparison nodes have all three possible successors, we receive the following
twelve rules as the ITS encoding of these nodes:

f inE ()→ f inI () | true f inE ()→ f inJ (T1) | T1 > 0 f inE ()→ f inK (T1) | T1 ≤ 0

f inI ()→ f inE () | true f inJ (T1)→ f inE () | T1 > 0 f inK (T1)→ f inE () | T1 ≤ 0

f inL ()→ f inP () | true f inL ()→ f inQ (T1) | T1 = 0 f inL ()→ f inR (T1) | T1 6= 0

f inP ()→ f inL () | true f inQ (T1)→ f inL () | T1 = 0 f inR (T1)→ f inL () | T1 6= 0

N

Finally, arithmetic assignment combines unification and arithmetic evaluation. Thus,
we translate arithmetic assignments edges to ITS by combining the ideas for the en-
coding of unification edges and those for the encoding of comparison edges. We use the
comparison that has to succeed for the evaluation to succeed as the condition of the rule.
Furthermore, we apply the resulting substitution to the term of the succeeding state.
We again assume that the arithmetic assignment node has all three possible successors.

Definition 5.22 (ITS rules for arithmetic assignment nodes). Let G = (V,E) be a
termination graph and let s ∈ V be an arithmetic assignment node with the outgoing
edges (s, s′err ,⊥,⊥), (s, s′succ , t1 = t2, σ) and (s, s′fail ,⊥,⊥).

We then define the ITS rules corresponding to s as follows:

ArithmeticAssignmentRules(s) := {term in(s)→ term in(s′err) | true,

termout(s
′
err)→ termout(s) | true}

∪ {term in(s)→ term in(s′succ)σ | t1 = t2,

termout(s
′
succ)σ → termout(s) | t1 = t2}

∪ {term in(s)→ term in(s′fail) | true,

termout(s
′
fail)→ termout(s) | true}

If either of the outgoing edges do not exist, the corresponding ITS rules are removed
from ArithmeticAssignmentRules(s). �

Example 5.32 (ITS rules for arithmetic assignment nodes). We encode the arithmetic
assignment nodes Q and U of the termination graph shown in Figure 5.12. The former
node has no successor that models the error case, whereas the latter node has all three
possible successor states. Thus, we receive the following twelve rules that encode these

101

5. Termination Analysis

nodes in an ITS :

f inQ (T1)→ f inV (T1, T3) | T3 = 1 foutV (T1, T3)→ foutQ (T1) | T3 = 1

f inQ (T1)→ f inW (T1) | true foutW (T1)→ foutQ (T1) | true

f inU (T1, Y1)→ f inY (T1, Y1) | true foutY (T1, Y1)→ foutU (T1, Y1) | true

f inU (T1, Y1)→ f inZ (T1, T3, Y1) | T3 = Y1 · T2 foutZ (T1, T3, Y1)→ foutU (T1, Y1) | T3 = Y1 · T2

f inU (T1, Y1)→ f inAA(T1, Y1) | true foutAA (T1, Y1)→ foutU (T1, Y1) | true

The application of the substitution σ : T2 7→ T3 has no effect in these cases, since the
variable T2 is not known to be ground prior in Q and U and thus is not available as an
argument in either term. N

We have now defined rules for each of the semantics-based edges that can occur in a
termination graph. There are four more kinds of edges that can occur in such a graph,
namely instance and generalization edges as well as split and parallelization edges. We
first consider instance and parallelization nodes, which are converted to ITS rules in the
same way.

The idea behind this encoding is that, if s is an instance of s′, instead of showing that
node s terminates, we can also instead show that s′ is terminating. This is sound due
to Lemma 5.1. We furthermore apply the instantiating substitution to s′.

Definition 5.23 (ITS rules for instance- and generalization nodes). Let G = (V,E) be
a termination graph and let s ∈ V be either an instance- or a generalization node. Let
(s, sgen , σ) be the outgoing instance- or generalization edge of s.

We then define the ITS rules corresponding to s as follows:

InstanceRules(s) := {term in(s)→ term in(sgen)σ | true,

termout(sgen)σ → termout(s) | true}

�

Example 5.33 (ITS rules for instance- and generalization nodes). The termination
graph shown in Figure 5.12 only has the single instance node T and no generalization
nodes. This node is encoded with the following ITS rules:

f inT (T1)→ f inA () | true foutA ()→ foutT (T1) | true

N

The one category of nodes for which we still have to define ITS rules are split- and
parallel rules. The intuition behind the encoding of both nodes is quite simple. These
nodes always have two successors. Any computation of a node represented by a split
node can be emulated by first evaluating the left-hand side of the split node and the
right-hand side afterwards.

We model this using the incoming and outgoing terms of the nodes. The idea is that
we only need to enter the right-hand node if we have finished evaluation of the left-hand
one. This mirrors our idea of showing termination of the right-hand node under the
assumption that the left-hand node terminated.

102

5.2. Transformation of Termination Graphs into Integer Transition Systems

Definition 5.24 (ITS rules for split nodes). Let G = (V,E) be a termination graph
and let s ∈ V be a split node with the split edges (s, s′lhs) and (s, s′rhs).

We then define the ITS rules corresponding to s as follows:

SplitRules(s) := {term in(s)→ term in(s′lhs) | true,

termout(s
′
lhs)→ term in(s′rhs) | true,

termout(s
′
rhs)→ termout(s) | true}

�

Example 5.34 (ITS rules for split nodes). The termination graph shown in Figure 5.12
only has a single split node, namely the node O. This node is encoded with the following
ITS rules:

f inO (T1)→ f inT (T1) | true

foutT (T1)→ f inU (X1, Y1) | true

foutU (T1, Y1)→ foutO (T1) | true

Note that in the rule foutT (T1)→ f inU (T1, Y1) | true the variable Y1 is free. At this point
the loss of precision by the split is modeled, since, at the application of this rule to some
term, any term may be chosen for Y1. N

We could apply the same idea to parallel nodes. However, experiments have shown that
this construction makes the resulting ITS more complicated and makes the termination
analysis harder than it needs to be. Also, while it is strictly necessary to “carry over”
information from the run on the left-hand side to the node on the right-hand side at a
split node, the evaluations of the children of a parallel node do not influence each other.
Hence, an easier construction suffices. The intuition behind this construction is that, if
an evaluation of some concretization of a parallel node is nonterminating, then either of
its children is nonterminating. We can thus simply use nondeterminism in the ITS to
pick one of the successor nodes.

Definition 5.25 (ITS rules for parallel nodes). Let G = (V,E) be a termination graph
and let s ∈ V be a parallel node. Let (s, s′lhs) and (s, s′rhs) be its outgoing parallel edges.

We then define the ITS rules corresponding to s as follows:

ParallelRules(s) := {term in(s)→ term in(s′lhs) | true,

termout(s
′
lhs)→ termout(s) | true,

term in(s)→ term in(s′rhs) | true,

termout(s
′
rhs)→ termout(s) | true}

�

103

5. Termination Analysis

Example 5.35 (ITS rules for parallel nodes). There are two parallel nodes in the
termination graph shown in Figure 5.12, namely the nodes B and D. These are encoded
as ITS rules using the definition above as follows:

f inB ()→ f inC () | true foutC ()→ foutB () | true

f inB ()→ f inD () | true foutD ()→ foutB () | true

f inD ()→ f inG () | true foutG ()→ foutD () | true

f inD ()→ f inH () | true foutH ()→ foutD () | true

N

We have now defined ITS rules for all types of nodes that can occur in a termination
graph. The construction of the ITS corresponding to a termination graph is now quite
simple, as we simply encode each node individually.

Definition 5.26 (ITS corresponding to termination graphs). Let G = (V,E) be a
Termination Graph. We define the ITS S corresponding to G as follows:

S = ({Rules(v) | v ∈ V } ,

where Rules(v) is a function that performs a case distinction based on the node type of v
and returns SuccessRules(v), SimpleRules(v), UnificationRules(v), ArithmeticRules(v),
ArithmeticAssignmentRules(v), InstanceRules(v), SplitRules(v), or ParallelRules(v), de-
pending on which rules are defined for v. �

Using this definition, we can now construct the ITS corresponding to our previous
example of a termination graph.

Example 5.36 (Constructing an ITS for Program 5.7). The ITS corresponding to the
termination graph shown in Figure 5.12 consists of all the rules given in Examples 5.28
through 5.35. N

We have seen how to construct an ITS from any given termination graph. In the next
section we are going to show that this construction is actually sound.

5.2.3. Soundness of the Reduction

It remains to show that the construction presented in the previous section is sound with
respect to termination. For this we first state that the translation from termination
graphs to ITS is sound in Lemma 5.4. The full proof of this lemma can be found in
Appendix A. We then use this lemma to show the soundness of the complete construction
in Theorem 5.1.

Lemma 5.4. Let G be a termination graph, let s be a state in G and let s be a non-
terminating concrete state that is represented by s with the concretizing substitution γ.
Then there exists a successor s′ of s in G that represents a concrete state s′ with the con-
cretizing substitution γ′, such that s′ is nonterminating. Furthermore, either term in(s)γ
is nonterminating or term in(s)γ →+

I term in(s′)γ′ holds true. �

104

5.2. Transformation of Termination Graphs into Integer Transition Systems

As stated previously, we now show that this local soundness of the translation of
termination graphs to ITS implies the soundness of the complete termination analysis.

Theorem 5.1 (Soundness of termination analysis). Let P be a program and let q be a
query. Furthermore, let G be a termination graph constructed from P and q with Algo-
rithm 5.1. Finally, let I be the ITS corresponding to G. If the query q is nonterminating
on P , then term in(sqinit) is nonterminating on I. �

Proof. Due to the definition of nonterminating queries and due to the construction of
termination graphs, we know that the root of G is an abstract state sqinit that represents
a nonterminating concrete state s with the concretizing substitution γ.

Due to Lemma 5.4 we know that there exists a state s′ in G such that s′ is a successor
of sqinit , and such that the abstract state s′ represents a nonterminating concrete state s′

with the concretizing substitution γ′. The Lemma furthermore states that term in(sqinit)γ
is either nonterminating or it evaluates to term in(s′)γ′. If it is nonterminating, the proof
is finished.

Otherwise we can apply Lemma 5.4 again to the abstract state s′ and the nontermi-
nating concrete state s′ represented by it and receive another abstract state s′′ that is a
successor of s′ such that s′′ is nonterminating. In addition to this, either term in(s′)γ′ is
nonterminating or term in(s′)γ′ →+

I term in(s′′)γ′′ holds true, where γ′′ is the substitu-
tion that concretizes s′′ to some nonterminating concrete state s′′. In the former case,
the proof is finished, since term in(sqinit)γ evaluates to the nonterminating term in(s′)γ′,
whence term in(sqinit)γ itself is nonterminating.

Since both term in(sqinit)γ →
+
I term in(s′)γ′ and term in(s′)γ′ →+

I term in(s′′)γ′′ hold
true, term in(sqinit)γ →

+
I term in(s′′)γ′′ holds true as well. We can continue this con-

struction by repeated application of Lemma 5.4 and receive either some nonterminating
term that term in(sqinit)γ evaluates to, or an infinite chain of terms that term in(sqinit)γ
evaluates to. In both cases, term in(sqinit)γ is nonterminating on I.

We have thus shown the soundness of the termination analysis presented in this chap-
ter. It remains to discuss the termination analysis of ITS . We do so in the next section
and give pointers to literature on this topic.

5.2.4. Termination Analysis of ITSs

The formalism of Integer Transition Systems is well known and has been studied in
depth. Even though the halting problem for these systems is undecidable, there are
algorithms that decide termination for large classes of systems. [PR04] describes one
such method.

For our implementation we use the algorithms implemented in the termination prover
AProVE as a backend for the resulting ITS . These algorithms are sufficient for handling
the integer transition systems resulting from our construction, especially since they are
comparatively simple. The ITS s resulting from our construction usually do not pose a
challenge to most termination provers for this formalism.

105

5. Termination Analysis

Example 5.37 (Termination analysis of ITS corresponding to Program 5.7). Consider
the ITS for Program 5.7 that we constructed in Example 5.36. The termination prover
that we use for showing termination of the term f inA () first simplifies that ITS to the
ITS consisting of the single rule:

f(X)→ f(X − 1) | X > 0

and proceeds to show termination of the term f(X), which is very simple. N

Note that the simplified integer transition system in the previous example is precisely
the argument that a human prover would use to argue about the termination of the
program. It could be described in plain English as “we subtract 1 from X as long as X
is larger than 0”. The fact that we can only perform this subtraction finitely often for
any fixed X is exactly the reason why Program 5.7 is terminating.

5.3. Practical Implementation

While we have described the termination analysis formally in the two previous sections,
there are still some roadblocks to an actual implementation. In this section, we briefly
describe the most major of these hindrances and how we handled them in our practical
implementation.

The most major obstacle was the treatment of arithmetic states. In our formalization,
these states are an infinite set of functions. Since it is not possible to directly represent
such an infinite set in a programming language, we instead store the relations R that
define the arithmetic state AR. Using this representation, the check whether or not the
statement AR |= r holds true is reduced to checking whether or not

∧
R⇒ r holds true.

This representation also allows us to check whether or not the abstract state s is an
instance of the abstract state s′ by checking whether or not the statement

∧
R⇒

∧
R′

holds true. Both checks can easily be carried out using an SMT solver.

Recent work furthermore allowed us to modularize the representation of the arithmetic
state, so that we can easily switch between the representation as a set of relations
and a representation using other abstract arithmetic domains. It would, for example,
be possible to represent arithmetic states using the well-known interval domain or the
octagon domain from [Min01]. These arithmetic domains both have their own decision
procedures for checking the aforementioned statements.

Another hurdle for the practical implementation is the extension of the functions
PickEdges and GeneralizationCandidate from [Str10, Section 6.2] to take the
arithmetic state into account. The standard heuristic for PickEdges decides whether
to use an abstract evaluation rule to evaluate a state, or whether to use an instance-,
generalization-, split- or parallel edge. We simply extended that heuristic to pick an
arithmetic evaluation edge or arithmetic assignment edge if it chooses to use an abstract
evaluation rule and such an edge is defined for the current state. We just extended
the abstract semantics by additional inference rules, but we did not change the rules
that govern when to pick edges that do not correspond to abstract evaluation. Since

106

5.3. Practical Implementation

the choice of these rules is responsible for nontermination of the graph construction, he
termination argument from [Str10, Section 6.3] still holds true for this adapted heuristic.

We also had to change the implementation of GeneralizationCandidate slightly,
as this function did not take the arithmetic state into account. Recall that General-
izationCandidate takes two abstract states s and s′ as input and tries to construct a
state sgen such that both s and s′ are instances of sgen . Since we represent arithmetic
states by sets of relations, we can simply intersect both sets of relations to receive a new
arithmetic state that is more general than the two existing arithmetic states. We employ
heuristics to perform a kind of relaxed intersection.

Example 5.38 (Relaxed intersection of sets of relations). Consider the two sets of
relations R1 := {X > 1} and R2 := {X > 2}. The traditional intersection yields
R1 ∩R2 = ∅.

In the context of arithmetic states, however, we see that the A{X>1} is a strict superset
of A{X>2}. Hence, the relaxed intersection of R1 and R2 yields the set {X > 1}. N

This relaxation of the intersection increases the power of our analysis, since we do not
“lose” relations unnecessarily during this process of generalizations. Using these ideas,
which mainly build on the implementation of the termination analysis from [Str10], we
were able to implement this termination analysis in the termination prover AProVE.
We evaluate this implementation in the following chapter.

107

6. Evaluation

In the previous chapter, we have defined a technique for termination analysis of programs
written in our fragment of Prolog. We have also shown its correctness.

In addition to this theoretical proof of soundness, we have implemented this method
and performed a number of experiments using examples from a multitude of different
sources. We present the results of these experiments and evaluate our approach in
comparison to other approaches to program termination in this chapter.

We first present the approaches we compared to our approach in Section 6.1 and
present the types of examples we performed our experiments on in Section 6.2. In
Section 6.3 we present a summary of our experiments. A combination of the existing
approaches is evaluated in Section 6.4. We discuss the advantages and limitations of our
technique in Section 6.5.

6.1. Compared Approaches

There are multiple approaches to termination analysis of Prolog-programs or fragments
thereof. Some of these approaches are implemented in AProVE as well, while others
are implemented in separate tools. We first give an overview over the techniques that
are implemented in AProVE, before we discuss the stand-alone tools that we were able
to obtain. A concise overview over all approaches mentioned in this section can be found
in Table 6.1.

Tool name Fragment Analysis Compared Reason

AProVE (to PiTRS) Cut + Arithmetic Termination Yes
AProVE (to DT) Cut Termination Yes
AProVE (to TRS) Cut Termination Yes
Ciao Cut + Arithmetic Termination No No analysis
PolyTool Logic Termination No Limited Fragment
Hasta-La-Vista Arithmetic Termination No Non-runnable code
TerminWeb Logic Termination No Non-runnable code
pTNT Cut Nontermination Yes
TALP Logic Termination No Limited Fragment
cTI Logic Termination No Limited Fragment
Caslog Arithmetic Complexity No Explicit moding
NTI Logic Nontermination No Limited Fragment
LPTP Logic Theorems No Not automatic

Table 6.1.: Approaches to termination analysis

109

6. Evaluation

6.1.1. Strategies Implemented in AProVE

There are three different strategies that are used by AProVE for showing the termina-
tion of Prolog programs. We give a brief summary of each approach and point to the
relevant literature for further reading.

Conversion to Term Rewrite System with Argument Filtering (to PiTRS) One ap-
proach to showing termination of logic programs is to transform them into a term rewrite
system whose termination implies termination of the original program. Such a transfor-
mation is described in [SKGST09].

In addition to this conversion, this method also includes a rewriting of arithmetic
programs to pure logic programs. It does so by using Peano notation to encode natural
numbers as uninterpreted constants. It furthermore adds definitions of the predefined
arithmetic operators and comparisons in terms of Peano notation, thus transforming
an arithmetic program into a logic program. This transformation was implemented in
AProVE. It is one of the techniques we will compare our approach to.

Conversion to Dependency Triples (to DT) In order to combine direct and trans-
formational approaches to the termination analysis of programs, the dependency triple
framework was introduced in [SKGN10] and refined in [SSKG11]. This approach uses
the same construction of an abstract program graph as we do in this work. Even though
this construction does not support arithmetic, we compare our method to it, since it is,
to the best of our knowledge, the most powerful technique for showing termination of
Prolog programs with cut.

Conversion to TRS (to TRS) Another approach was presented in [GSSK+12]. This
method first constructs an abstract program graph that is similar to our construction
and which was the starting point for our construction. It then transforms the graph into
a term rewrite system, whose termination implies termination of the original program.
While this construction takes cuts into account during the construction of the graph,
it simply ignores arithmetic comparisons as well as the is-predicate. Nevertheless, we
compare it to our method.

6.1.2. Other Tools for Termination

There are a number of other tools that also prove termination of logic programs, with
varying degrees of handling for built-in predicates of Prolog. In this section we give an
overview over these tools and discuss whether or not we compare them to the approach
presented in this thesis.

Ciao This is a complete Prolog implementation, which includes proprietary exten-
sions. Among these extensions is a predicate terminates\1 which takes a term and suc-
ceeds if all calls of the form described by the term terminate. According to [BCC+05,
Section 56], this predicate uses the non-termination analysis presented in [DLGH97].

110

6.1. Compared Approaches

However, experiments on our set of benchmarks have shown that the implementation ap-
parently only tries to evaluate the predicate and does not perform any more complicated
analysis of it. In particular, calls of non-terminating predicates lead to a nonterminating
analysis. Hence, we exclude Ciao from the comparison with our approach.

PolyTool This is another approach to show termination of definite logic programs. It
uses a conversion of programs to polynomials, where each function symbol and each
predicate is associated with a fixed polynomial. The system is described in [NDS07].
An explanation of the theoretical background is given in [NDS05]. Since the tool only
supports definite logic programs, but neither programs containing cuts nor any other
built-in predicates of Prolog, we exclude it from the comparison with our approach.

Hasta-La-Vista Hasta-La-Vista uses a transformation of a program into a set of
constraints to show its termination, as described in [SDS03]. Even though we were able
to obtain a copy of this tool, we were not able to execute the tool on a modern computer.
The tool was originally written using a Prolog implementation manufactured by a
Belgian company called BIM. Since the company went bankrupt in 1996, we were unable
to obtain a copy of this implementation. As Hasta-La-Vista makes heavy use of
the proprietary extensions of Prolog by BIM, it is not possible to run this tool on
modern computers. We therefore exclude Hasta-La-Vista from the comparison with
our approach.

TerminWeb TerminWeb implements semantics for Prolog that allow reasoning
about the termination behavior of the program, which were originally published in
[GC03, CT99]. Similar to Hasta-La-Vista, we were able to obtain a copy of the
tool. However, the tool was written using an outdated version of SICStus Prolog, for
which neither the implementation, nor the documentation is available anymore. Thus, it
was not possible to execute the tool on modern computers. For this reason, we exclude
TerminWeb from the comparison with our approach.

pTNT This tool infers non-termination in two phases [VDS11]. In the first phase, non-
terminating queries are identified, while it is assumed that all arithmetic comparisons
succeed. These comparisons are then transformed to a constraint satisfaction problem
and solved in the second phase. We were able to acquire the code for this tool and could
run it on a modern machine. Hence, we are going to compare pTNT with our approach.

TALP Another approach to termination analysis was described in [OCM00] and im-
plemented in the tool TALP. In this approach, the program is first transformed into a
term rewrite system with conditions, which is then in turn translated to a standard term
rewrite system. Similar to our approach, the termination of the standard TRS implies
the termination of the original program. However, this transformation ignores cuts and
does not take arithmetic predicates into account. It is therefore not comparable to our
approach and not included in the benchmarks.

111

6. Evaluation

cTI The approach of cTI is to perform a bottom-up analysis of the program in order
to infer termination conditions for predicates [MB05]. However, this tool does not sup-
port cuts or integer arithmetic. We therefore exclude it from the comparison with our
approach.

Caslog A complexity analysis of the evaluation of predicates can be carried out us-
ing Caslog [DL93]. Even though complexity analysis is not the same as termination
analysis, the existence of a finite upper bound on the runtime of the inference of a pred-
icate implies the termination of its inference. Thus, we considered including Caslog
for comparison with our approach. However, Caslog needs explicit annotations about
the so-called mode of each predicate that may occur during the evaluation of a given
predicate, which is not included in our set of benchmarks. We thus exclude Caslog
from the comparison with our approach.

NTI Another idea for showing nontermination of programs is to compute a set of
looping queries. An iterative algorithm for this is presented in [PM06] and implemented
in NTI. However, this tool only works on definite logic programs and ignores cuts and
arithmetic comparisons. Therefore, we exclude NTI from the comparison with our
approach as well.

LPTP Finally, there exists a tool called LPTP that implements a theorem prover over
the domain of programs [Stä98]. However, since the verification offered by LPTP is inter-
active instead of automatic, this tool is not comparable to automatic (non-)termination
provers. Therefore, we exclude LPTP from the set of compared tools.

6.2. Types of Examples

In this section we give a short overview over the examples that we used to evaluate
our approach. The examples can be separated into two categories: logic and arithmetic
examples. Logic examples are those whose (non-)termination-argument does not rely
on arithmetic, but only on pure logic and the cut. These examples are taken from
the Termination Problems Database1, or TPDB for short [tpd15]. Whereas the TPDB
separates these examples into three subcategories, based on what features of Prolog
they use, we just use this set of 477 examples without further distinction.

Arithmetic examples are those examples whose argument for (non-)termination de-
pends on the arithmetic properties. These examples are taken from a multitude of
sources. We have taken 14 examples from [SS86, Chapter 8]. 12 more examples are
taken from the solutions to the exercises to this chapter, provided by [Bar15]. Another
26 examples were taken from [Het15], as well as nine additional problems from [Lam15].

Furthermore, we have implemented five solutions to problems from [Hug15]. We im-
plemented 28 examples to check our work for correctness during the implementation.

1http://termination-portal.org/wiki/TPDB

112

http://termination-portal.org/wiki/TPDB

6.3. Discussion of Results

Finally, the largest part of our examples consists of ports of examples from [tpd15],
which were originally written in the C-language. We ported the 68 examples from the
category AProVE numeric to Prolog and used them in our set of examples. Thus,
we have a set of 162 examples whose (non-)termination argument relies on arithmetic
comparison and evaluation.

Of these examples, 156 have been added to the TPDB. The six examples which were
not added consisted of very simple nonterminating examples that served merely to test
the correctness of the implementation.

6.3. Discussion of Results

In this section we summarize the results of our experiments and discuss the comparison
between our approach and existing ones. We provide and discuss a summary of the
actual results of these runs. The major statistical properties of the results are shown in
Figure 6.1 and Figure 6.2.

6.3.1. Performance on Logic Examples with Cut

We show the results of running the four compared approaches on the 477 logic examples
in Figure 6.3. The runtime of these approaches is shown in Figure 6.4. Note that the
y-axis is scaled logarithmically in the latter figure.

We first notice that none of the approaches implemented in AProVE are able to
show nontermination of programs. This stands in contrast to pTNT, which can only
show nontermination of programs, but not their termination. Out of the four methods
for showing termination, the transformation to dependency triples clearly outperforms
the other methods. The transformation to a PiTRS is the weakest previously existing
approach. Our approach is slightly weaker than this transformation, but not by a large
margin. More specifically, whereas transformation to a PiTRS could show the termi-
nation of 269 examples, our approach could still prove termination of 223 examples.
Moreover, the examples for which we can show termination are not a subset of those
that can be shown to be terminating by the transformation to PiTRS.

Figure 6.4 shows that even though our approach is slightly less powerful than existing
approaches, it offers an improvement in average runtime over at least the two next

Term Rewriting
with Argument

Filter

Dependency
Triples

Term
Rewriting

Integer
Transition

System
Two-Step

Yes 269 345 322 223 0
Maybe 208 132 155 254 421
No 0 0 0 0 56

Average [s] 10.37 3.70 7.29 6.19 7.29
Median [s] 2.14 1.97 2.15 3.05 0.46

Figure 6.1.: Statistical evaluations of benchmarks on 477 logic programs

113

6. Evaluation

powerful methods. The average runtime of our approach on the 477 examples in this
collection is 6.19s, compared to 10.37s for the conversion to dependency triples and
compared to an average runtime of 7.29s for the conversion to a term rewrite system
with argument filtering. Hence we see that our approach is neither as powerful nor as fast
as other methods for showing termination of logic programs with cut. This is especially
visible when comparing median runtimes. The median runtime of our approach is 3.05s,
which translates to a slowdown of 40% in comparison to the transformation to term
rewriting, which is more powerful by far.

The evaluation of the five approaches on logic programs has shown that our approach is
both weaker and slower than the existing approaches for termination analysis. However,
even though our method is weaker than the existing ones, it can still show termination
of more than half of the benchmarks that we know to be terminating.

6.3.2. Performance on Arithmetic Examples

The benefits of our approach are clearly visible when we use examples whose termination
argument relies on arithmetic properties. We show the results of running our method
on a set of 162 arithmetic programs. The termination results are shown in Figure 6.5,
whereas the runtime of the benchmarks can be seen in Figure 6.6.

It is easy to see that our approach beats the existing approaches by a wide margin. This
was to be expected, since none of the existing approaches take arithmetic evaluations
and comparisons into account natively. These comparisons, however, are an integral
part of the termination argument for the examples in this set.

The only method that handles these comparisons and evaluations at all is the conver-
sion to a term rewrite systems with argument filtering. It does so by converting these
comparisons to standard logic predicates using Peano notation. Thus, it is able to show
termination for 67 out of the 162 examples in this set. Our approach does not rely on
such a transformation and can show termination of 110 examples out of this set.

The positive answers of the other two approaches occur for some very simple examples,
for which it apparently suffices to argue over the structure of the logical fragment of the
program in order to show termination. This also holds for the five cases in which pTNT
was able to show nontermination in this case.

An additional drawback of the conversion of arithmetic predicates to Peano notation

Term Rewriting
with Argument

Filter

Dependency
Triples

Term
Rewriting

Integer
Transition

System
Two-Step

Yes 67 30 11 110 0
Maybe 85 132 151 52 157
No 0 0 0 0 5

Average [s] 54.66 15.12 13.09 13.93 0.63
Median [s] 71.26 2.23 1.73 1.85 0.66

Figure 6.2.: Statistical evaluations of our benchmarks on 162 arithmetic programs

114

6.3. Discussion of Results

 0

 100

 200

 300

 400

 500

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

pTNT

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s

YES MAYBE NO

Figure 6.3.: Results of termination analysis on logic benchmarks

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

pTNT

R
u
n
ti

m
e
 [

s]

YES MAYBE NO

Figure 6.4.: Runtimes of termination analysis on logic benchmarks

115

6. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

pTNT

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s

YES MAYBE NO

Figure 6.5.: Results of termination analysis on arithmetic benchmarks

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

pTNT

R
u
n
ti

m
e
 [

s]

YES MAYBE NO

Figure 6.6.: Runtimes of termination analysis on arithmetic benchmarks

116

6.4. Combining the Approaches

becomes obvious in Figure 6.6. Since this conversion results in a huge blowup of the
program size, the runtime of the conversion to PiTRS are far greater than those on logic
examples. This also shows itself in the average and median runtime of 58.26s and 27.40s,
respectively, for this approach. When compared to the average and median runtime of
13.93s and 1.84s of our approach, respectively, it is clear that our approach does not
only have a much greater power than even the most powerful existing approach, but also
provides a clear speedup.

6.4. Combining the Approaches

None of the approaches implemented in AProVE handle a subset of the examples
handled by any other approach. Thus, we also tested a version of AProVE in which all
previously existing approaches and the new one presented in this thesis were executed
in parallel.

Using this version, we could show termination of 353 logic benchmarks with an average
and median runtime of 8.61s and 2.27s, respectively. This shows that this combined
approach is more powerful than each individual approach on its own, even though the
parallel execution of these approaches comes at a slight runtime penalty.

With regards to arithmetic examples, the combined version could show termination
of 118 benchmarks with an average and median runtime of 16.39s and 2.36s, respec-
tively. This shows that even though our new approach is more powerful than all existing
approaches on arithmetic programs, not all other approaches handle a subset of those
examples handled by our approach. Combining the existing approaches allows us to
show more examples terminating than just running our approach in isolation. Similar
to the logic benchmarks, this increase in power comes with a slight runtime penalty.

6.5. Advantages and Limitations

We have shown that our approach is both more powerful and faster than all existing and
still available approaches to showing termination of arithmetic programs by far. The
conversion into an integer transition system is both fast and retains the properties of the
program which are necessary for showing termination. Also, the decision procedure for
termination of integer transition systems, which we use as a backend, is powerful enough
to show termination of the resulting systems.

However, our method does not perform as well on logic programs. For these programs
there exist more powerful and faster decision procedures that partially decide termination
of programs. Thus, we clearly see that our encoding does not carry over the logical
properties of programs quite as well as, for example, the encoding into dependency
triples does.

This shows that a combined approach would probably work best for the analysis of
general programs. Such an approach would run our method if the program contains
arithmetic predicates at all. Otherwise it would construct dependency triples from the
program and show termination that way.

117

7. Conclusion

We have started this thesis with the introduction of a fragment of the programming
language Prolog that contains both the built-in arithmetic capabilities of that language
as well as the cut in Chapter 2. In that chapter we have given an intuitive explanation
of the behavior of a program. For the official semantics of the language, we have referred
to [ISO95] and have given a brief overview over the features that ISO-Prolog contains,
but that are not present in our fragment.

In Chapter 3 we have recapitulated the concrete semantics first published in [SESK+12].
This semantics is an alternative semantics for ISO-Prolog, which is equivalent to the
“official” semantics both in regards to termination and with regards to complexity of
evaluations. We have presented those parts of the concrete state-based semantics of
Prolog from [SESK+12] that are relevant to our fragment of Prolog.

Following that we have defined an abstract semantics for this fragment of Prolog
in Chapter 4. Parts of this semantics were first published in [SESK+12] as part of a
termination analysis for the logic fragment of Prolog with the cut. We have separated
those rules from the termination analysis that are general purpose and have extended
this set by rules that handle arithmetic comparison and evaluation. In this chapter we
have also showed that these extended abstract semantics provide a sound abstraction of
the concrete semantics.

In Chapter 5 we have built a termination analysis for our fragment of Prolog. For
this we have first constructed a termination graph from a program and a query, which
we have then transformed into an integer transition system. We have also showed that
this reduction of a program and a query to an ITS is sound with respect to termina-
tion, meaning that termination of the resulting ITS implies termination of the original
program. The resulting ITS can then be analyzed for termination using existing ap-
proaches.

Finally, we have reported on our implementation of the termination analysis from
the preceding chapter in Chapter 6. We have also compared it to existing methods for
showing program termination on two sets of examples, namely a set of examples that
only used logic features and the cut, and a set of examples that used the full fragment
of Prolog defined in an earlier chapter.

We found that our approach is slightly less powerful than existing approaches on
the former set, but is competitive to those methods in terms of runtime. It also is
still powerful in terms of absolute numbers, showing termination for more than half of
the terminating examples. However, it outperformed all existing methods for showing
termination of Prolog programs on the latter set both in terms of runtime and in terms
of power.

This is mainly due to the fact that existing approaches either only apply a transfor-

119

7. Conclusion

mation to Peano notation to arithmetic programs or simply treat arithmetic predicates
as built-in ones without any result on the program state. While the former method
results in a strong increase of the size of the program, the latter method cannot show
termination of programs whose termination argument relies on arithmetic properties.

Our main theoretical contributions consist of the separation of an abstract semantics
from the termination analysis performed in [SESK+12] and the extension of that termi-
nation analysis to the fragment of Prolog considered in this work. On a practical side
of things, we have implemented the aforementioned termination analysis and shown that
this method is quite powerful to show termination of programs written in our fragment
of Prolog. To the best of our knowledge, this is the first termination analysis for this
fragment of the language. However, there remain some open research questions. We are
going to discuss these in the next section.

7.1. Future Work

Even though this work is a significant improvement over existing methods for automated
analysis of Prolog programs, there are still open questions for further research. We
discuss some of these questions in this section. Some of these questions were already
posed in [Str10, Chapter 8].

First and foremost, even though we extended the fragment of Prolog that our anal-
ysis handles beyond that handled by other existing approaches, there are still a lot of
features of ISO-Prolog that are ignored by our analysis. These include, for example,
user interaction, file input and output as well as predicates that change the program at
runtime. A more thorough listing of the built-in predicates that are missing from our
fragment is given in Section 2.3. One avenue of research would be the inclusion of these
predicates in the abstract semantics defined in Section 4. It would then be possible to
extend the termination analysis of Section 5 to programs containing these predicates.

The termination analysis rests in large parts on the choice of the function PickEdges
for Algorithm 5.1. In our implementation we used a function that proved to work well
on our set of examples, but that does not have a solid theoretical foundation. We are
nearly certain that there exist other choices of this function that improve the termination
analysis. Finding such a function would improve both the power and the runtime of the
termination analysis.

Another interesting path would be the use of the abstract semantics in other types of
analysis. The automated analysis of the complexity of the evaluation of a query as well
as its determinacy are analyses that come to mind. Both analyses have been discussed in
[GSSK+12]. This work implemented these analyses using the same graph construction
that it used for termination analysis, and which we in turn used in this work. Hence, it
should be easy to use the graph constructed in Section 5.1 for these kinds of analyses.

We have seen in the empirical evaluation of our method that even though our approach
performs well on arithmetic programs, it is outperformed by other, previously existing
methods on logic programs with cut. It would be interesting to find a way to combine
the power of our method on arithmetic programs with the power of existing approaches

120

7.1. Future Work

on logic programs with cut.
Finally, both our abstract semantics and the termination analysis build on the notion

of abstract states as defined in Section 4.1. Although the information contained in these
states is sufficient to show termination of our benchmarks, we are unable to construct
a complete abstraction using these states, but only a sound one. For example, we only
store information about non-unifiability of terms in the state, but no information about
the inequality of terms. We are certain that the storage of additional information in
these states would sharpen the analysis.

Even though there are methods for showing termination for complete other languages
and not just fragments thereof, analysis of Prolog has always concentrated on frag-
ments of this language. This is in spite of the fact that the semantics of Prolog are
more precisely defined and simpler than those of most other languages, while it is still
possible to write programs with a real-world use in it with considerable ease. It is our
hope that this work builds the foundation for a method of analysis of the complete
Prolog language.

121

A. Supplementary Proofs

Lemma A.1 (Reprint of Lemma 5.3 on page 85). Let s = (〈t, T 〉 ,G,U , E ,A) be an
abstract state, let NextG be a sound groundness analysis function and let σ be a function
that replaces all variables in 〈t, T 〉 with fresh term variables. Furthermore, let γ be
some concretization of s. If 〈tγ, Tγ〉 evaluates to 〈Tγγ′〉, then σ−1γγ′ conforms to
s′ = (〈Tσ〉 ,Gσ ∪NextG(t,G)σ,Uσ, Eσ,Aσ). �

Proof. It is clear that γγ′ conforms to the knowledge base (Gσ,Uσ, Eσ,Aσ), since σσ−1 =
id and since γ already is a concretization, whence T (Tσσ−1γ) = ∅. Since γ′ is another
concretization, i.e., the domain of γ contains only term variables, we have Tσσ−1γγ′ =
Tγ. As γ conforms to s, we can thus infer that σ−1γγ′ fulfills the criteria for conformity
regarding Uσ, Eσ and Aσ.

It remains to show that V(Xσσ−1γγ′) is empty for allX ∈ NextG(t,G), which amounts
to showing that V(Xγγ′) is empty for these X. This follows directly from the assumed
soundness of NextG . Since γ′ is the answer substitution found by evaluating tγ, we know
by this soundness criterion that γ′ maps all variables in NextG(t,G) to ground terms.
Hence, the statement V(Xσσ−1γγ′) = ∅ holds true for all X ∈ NextG(t,G).

Thus, σ−1γγ′ conforms to s′ and Lemma A.1 holds true.

In order to show Lemma 5.4, we first need an additional lemma that proves the
intended relation between term in(s) and termout(s) of any given state s. The idea is
that we can go from term in(s) to termout(s) if s is terminating and succeeds. On the
way we collect the succeeding substitution.

Lemma A.2. Let G be a termination graph, let s be an abstract state and let γ be a
substitution conforming to s. Furthermore let I be the ITS corresponding to G. If sγ
succeeds and if term in(s)γ is terminating, then term in(s)γ →+

I termout(s)γθ holds true
for some substitution θ and γθ conforms to s. �

Proof. If sγ succeeds, then there is a finite sequence of concrete states s1, s2, . . . , sk such
that si → si+1 for all i ∈ [1;n− 1], s1 = sγ and such that sk = 〈�〉.

If s is an instance node, we follow its instance edge to some other node and continue
doing so until we reach either a node that is not an instance node or we arrive back at
s. We collect all the instance-substitutions along this path and receive the combined
substitution σ. If we arrive back at s, then term in(s)γ evaluates to term in(s)γσ and
thus, term in(s)γ is nonterminating. This is a contradiction to our assumption. Hence,
this cannot occur.

Thus, we assume that we arrive at some node s′ which is not an instance node,
but which is reachable from s by only following instance edges. We call the combined

123

A. Supplementary Proofs

substitution along these edges σ and perform a case distinction on the type of s′ to show
that, if term in(s′)γσ is terminating in I, then it evaluates to termout(s

′)γσθ for some θ.
Thus, for the remainder of this proof we assume that term in(s′)γσ is terminating in I.

We show the claim by induction over k.

Base case: k = 1 If k = 1, then s′σγ is directly terminating, then it must be of the
form 〈�〉, whence s′ is of the form (〈�〉 ,G,U , E ,A). Thus, (〈�〉 ,G,U , E ,A) is a success
node and we have term in(s′)σγ →I termout(s

′)σγ, according to Definition 5.17. Hence,
Lemma A.2 holds in this case.

Induction step: k > 1 Assume that s′σγ reaches a success state in k − 1 steps and
assume that the claim holds for all succeeding states that succeed in less than k − 1
steps.

Case 1: s′ is a simple node If s′ is a simple node, it has a single successor s′′, where s′

evaluates to s′′ according to the abstract semantics and, more precisely s′σγ evaluates
to s′′σγ according to the concrete semantics. Since s′σγ is succeeding in k steps and
evaluates to s′′σγ in one step, the latter state succeeds in k − 1 steps. Furthermore, if
term in(s′′)σγ is nonterminating, then term in(s)γ is nonterminating as well, since

term in(s)γ →+
I term in(s′)σγ →I term in(s′′)σγ

holds true. This is a contradiction to our assumption that term in(s)γ is terminating,
hence term in(s′′)σγ is terminating. Thus, we can apply the induction hypothesis to s′′

and receive that term in(s′′)σγ evaluates to termout(s
′′)σγθ for some θ. Since s′ is a

simple node, I contains the rule termout(s
′′)→ termout(s

′) | true whence the statement

termout(s
′′)σγθ →I termout(s

′)σγθ

holds true.

Case 2: s′ is a unification node If s′ is a unification node, it has two successors, which
we call s′1 and s′2 and which represent the case that the unification succeeds or fails,
respectively.

Assume that the unification succeeds in s′σγ with the most general unifier σ′. Then
s′1σγσ

′ succeeds in k − 1 steps. Furthermore, since s′ is a unification node, I contains
the rule term in(s′)σ′ → term in(s′′) | true and hence,

term in(s′)σγ →I term in(s′1)σγσ′

holds true. Using the same reasoning as in case 1, we find that s′1σγσ
′ must be termi-

nating and we can apply the induction hypothesis to s′1 to see that

term in(s′1)σγσ′ →+
I termout(s

′
1)σγσ′θ

124

holds true. We can then apply the rule termout(s
′
1)σ′ → termout(s

′) | true, which is part
of I since s′ is an evaluation node and receive that

termout(s
′
1)σγσ′θ → termout(s

′)σγθ

holds true and hence, we have term in(s′)σγ →+
I termout(s

′)σγθ.
Now assume that the unification fails in s′σγ. We then have the same situation as we

had in case 1 if the backtrack rule was applied to s′. Hence, we can copy the proof from
this case with s′2 as the successor node and receive that term in(s′)σγ →+

I termout(s
′)σγθ

holds true.

Case 3: s′ is a comparison node If s′ is a comparison node and s′σγ succeeds, then
the comparison evaluated in s′ must either be true or false, but the evaluation of the
expressions on either side must succeed without an error.

Assume that the comparison in s′ succeeds. Then there is a successor node s′1 of s′

that models this as well as a rule term in(s′) → term in(s′1) | t1 ./ t2 in I, where t1 ./ t2
is the comparison that succeeds in s′σγ. Since this comparison succeeds, we see that

term in(s′)σγ →I term in(s′1)σγ

holds true. Using the same reasoning as in case 1, we infer that term in(s′1)σγ is termi-
nating. We furthermore see that s′1σγ succeeds in k− 1 steps, whence we can apply the
induction hypothesis to it and receive the fact that

term in(s′1)σγ →+
I termout(s

′
1)σγθ

holds true. Since we already know that (t1 ./ t2)σγ is a tautology, (t1 ./ t2)σγθ is as
well. Hence, we can apply the rule termout(s

′
1)→ termout(s

′) | t1 ./ t2 and find that

termout(s
′
1)σγθ →I termout(s

′)σγθ

holds true.
Now assume that the comparison in s′ fails. We can apply the same reasoning as

before using s′2 as the successor node and the knowledge that, if (t1 ./ t2)σγ is false,
then ¬(t1 ./ t2)σγ is a tautology. Hence, we receive the fact that

term in(s′)σγ →+
I termout(s

′)σγθ

holds true for some θ in this case as well.

Case 4: s′ is an arithmetic assignment node If s′ is an arithmetic assignment node
and s′σγ succeeds, then the evaluation of the expression in the arithmetic assignment
succeeds. We perform a case distinction based on whether or not its result unifies with
the left-hand side of the assignment predicate.

Assume that the unification succeeds. Then we know that the condition t1 ./ t2 holds
true in s′σγ, i.e., (t1 ./ t2)σγ is a tautology. We furthermore know that s′σγ evaluates

125

A. Supplementary Proofs

to s′σγσ′ for the unification σ′ Using the same reasoning as before, we see that we can
use the rule term in(s′)→ term in(s′1)σ′ | t1 ./ t2 to find that

term in(s′)σγ →I term in(s′2)σγσ′

holds true. We then apply the induction hypothesis to term in(s′2) to see that

term in(s′2)σγσ′ →+
I termout(s

′
2)σγσ′θ

holds true as well. We can then finally apply the rule termout(s
′
2)σ′ → termout(s

′) | t1 ./
t2 to infer that

termout(s
′
2)σγσ′θ →I termout(s

′)σγθ

holds true.
The case in which the unification does not succeed is identical to the case of a simple

node or that of failing unification in case 2. We can copy the proof from the former case
and receive the fact that

term in(s′)σγ →+
I termout(s

′)σγθ

holds true in this case as well.

Case 5: s′ is a split node If s′ is a split node, then we know that s′σγ only has a single
goal of the form tσγ, Tσγ. Since s′σγ is succeeding, both the term tσγ as well as the
sequence of terms Tσγ are succeeding. Furthermore, since both need to be evaluated to
success for s′σγ to be evaluated, we know that both terms succeed in less than k steps.

Let s′1 and s′2 be the successors of s′. We first apply the first split rule term in(s′) →
term in(s′1) | true to receive the fact that

term in(s′)σγ →I term in(s′1)σγ

holds true. We then apply the induction hypothesis to s′1 with the concretizing substi-
tution σγ. This implies that if term in(s′1)σγ is terminating

term in(s′1)σγ →+
I termout(s

′
1)σγθ

holds true. Using the same reasoning as before with the rule term in(s′) → term in(s′1) |
true in I, we infer that term in(s′1)σγ is terminating, since otherwise term in(s′)σγ would
not be terminating.

We can then apply the rule termout(s
′
1)→ term in(s′2) | true to find that

termout(s
′
1)σγθ →I term in(s′2)σγθ

holds true. Following this, we can apply the induction hypothesis again to s′2 to receive
that, if term in(s′2)σγ is terminating, then

term in(s′2)σγθ →+
I termout(s

′
2)σγθθ′

126

holds true. We again infer that term in(s′2)σγ is terminating, since its nontermination
would imply nontermination of term in(s′)σγ.

Using the final split rule termout(s
′
2)→ termout(s

′) | true, we can now see that

termout(s
′
2)σγθθ′ →I termout(s

′)σγθθ′

holds true.

Case 6: s′ is a parallel node The proof in this case is very similar to the previous
case. If s′ is a parallel node, it is of the form s′ = 〈g | G〉, where either 〈gγσ〉 or 〈Gγσ〉
is succeeding in less steps than 〈gγσ | Gγσ〉.

If 〈gγσ〉 is succeeding in less steps than 〈gγσ | Gγσ〉, we apply the induction hypoth-
esis to the left-hand successor of s′ and use the rules term in(s′) → term in(s′1) | true
and termout(s

′
1) → termout(s

′) | true to argue that, if term in(s)γ terminates, then it
evaluates to termout(s)γθ. In the other case, namely in the case that 〈G〉 succeeds in
less steps than 〈g | G〉, we apply the induction hypothesis to the right-hand successor of
s′ and receive the same result.

Hence, in both cases the lemma holds true.

Conclusion We have shown that term in(s′)σγ evaluates to termout(s
′)γσθ for some θ.

Hence the induction step holds true in this case.
We can now backtrack through the chain of instance edges that we took at the begin-

ning and see that termout(s
′)σγθ evaluates to termout(s)γθ. Thus, under the assumption

that term in(s)γ terminates, it evaluates to termout(s)γθ.
We have shown that the claim of Lemma A.2 holds for states that terminate immedi-

ately as well as for those that take at least a single evaluation to evaluate successfully.
Hence, according to the principle of induction, Lemma A.2 holds true.

As stated previously, we now use Lemma A.2 to show that Lemma 5.4 holds true.

Lemma A.3 (Reprint of Lemma 5.4 on page 104). Let G be a termination graph, let s
be a state in G and let s be a nonterminating concrete state that is represented by s with
the concretizing substitution γ. Then there exists a successor s′ of s in G that represents
a concrete state s′ with the concretizing substitution γ′, such that s′ is nonterminating.
Furthermore, either term in(s)γ is nonterminating or term in(s)γ →+

I term in(s′)γ′ holds
true. �

Proof. We show Lemma A.3 using a case distinction on the type of s.

Case 1: s is a simple node If s is a simple node, then there exists a successor node s′ of
s such that s′ represents the concrete successor s′ of s with the concretizing substitution
γ′ = γ, according to the soundness of the abstract semantics, which was shown in Lemma
4.8. Also, since s is simple, I contains the rule term in(s) → term in(s′) | true, whence
the statement

term in(s)γ →+
I term in(s′)γ

holds true. Thus, the lemma holds true in this case.

127

A. Supplementary Proofs

Case 2: s is a unification node If s is a unification node, then the unification that
occurs in s either succeeds or fails. Let s′1 and s′2 be the successor nodes of s that model
success and failure of the unification, respectively.

Assume that the unification succeeds. In this case, since the unification rule is sound,
s′1 represents the concrete state s′, which is the concrete successor state of s with the
concretizing substitution γ′ = γσ, where σ is the unifier applied in the unification. Also,
since s is a unification node, I contains the rule term in(s) → term in(s′1)σ | true, which
we can apply to term in(s)γ to receive that

term in(s)γ → term in(s′1)γσ

holds true.
In the case that the unification does not succeed, we copy the proof from case 1 for

the successor node s′2 and receive the truth of the statement

term in(s)γ → term in(s′2)γσ

in this case as well.

Case 3: s is a comparison node If s is a comparison node, then there are three
possible successor states for s, namely the one in which the evaluation of either of the
expressions results in an error, as well as those in which the comparison succeeds and
fails, respectively, which are represented by the abstract states s′1, s′2 and s′3 respectively.

Assume that the evaluation of either expression in s fails. Then s evaluates to the
terminal error state, whence s is terminating. This contradicts our assumption, whence
this case cannot occur.

Now assume that the comparison at the head of s succeeds. Then s evaluates to s′,
which is nonterminating as well and represented by s′2. Since the evaluation in s = sγ
succeeds and since I contains the rule term in(s)→ term in(s′2) | t1 ./ t2, where t1 ./ t2 is
the comparison in s, we can apply this rule to term in(s)γ and receive that the statement

term in(s)γ →I term in(s′2)γ

holds true.
If the comparison at the head of s fails, we employ the same argument as in the previous

case with the successor state s′3 and the rule term in(s)→ term in(s′3) | ¬(t1 ./ t2). This
argumentation yields the truth of the fact

term in(s)γ →I term in(s′3)γ

Case 4: s is an arithmetic assignment node If s is an arithmetic assignment node,
then the evaluation of sγ falls into one of three cases. Either the evaluation of the
expression on the right-hand side of the arithmetic assignment fails, the unification of
its result with the left-hand side of the assignment succeeds, or the unification fails. We
call the three successor states of s that represent these cases s′1, s′2 and s′3, respectively.

128

As argued before, it can not be the case that the evaluation of the expression fails, since
sγ is nonterminating and such a failure would terminate the computation. Hence, we
consider the latter two cases.

Assume that the unification of the result of the right-hand side of the assignment with
its left-hand side succeeds. Then sγ evaluates to sγσ, where σ is the unifier used in
the unification and sγσ is represented by s′2, according to the proof of the soundness of
the abstract semantics. We apply the rule term in(s) → term in(s′2)σ | t1 ./ t2, which is
possible since the unification of t1 and t2 succeeds, and receive the truth of the statement

term in(s)γ →I term in(s′2)γσ

where γ′ := γσ and s′2γσ is nonterminating.
Now assume that the unification fails. In this case we can simply copy the proof from

case 1 or the latter subcase of case 2 using s′3 as the successor node. This also yields the
truth of the statement

term in(s)γ →I term in(s′3)γ

where s′3γ is nonterminating.

Case 5: s is a split node Let s be a nonterminating split node and let s′1 and s′2 be
its left- and right-hand successor, respectively. Also, let s be a nonterminating concrete
state in Conc(s) with the concretizing substitution γ. Due to Lemma 5.2, we know that
either s′1 or s′2 is nonterminating.

s′1 is nonterminating Since the knowledge base of s′1 is the same as that of s, we know
that γ conforms to s′1. Furthermore we can see from the proof of Lemma 5.2 that 〈tγ〉
is nonterminating. Finally, since s is a split node, I contains the rule term in(s) →
term in(s′1) | true, whence term in(s)γ →I term in(s′1)γ holds true.

s′1 is terminating and the evaluation of s′1γ fails Since s′1γ = 〈tγ〉 fails, the evaluation
of sγ = 〈tγ, Tγ〉 fails as well. However, a failing evaluation is terminating by defini-
tion, and hence s is terminating. This is a contradiction to our assumption that s is
nonterminating. Thus, this case cannot occur.

s′1 is terminating and the evaluation of s′1γ succeeds We show that there exists
a concretization θ such that σ−1γθ conforms to s′2, that s′2σ

−1γθ is nonterminating
and that term in(s)γ →+

I term in(s′2)σ−1γθ holds true. We start by showing the latter
statement. For this we show that the following three evaluations are possible in I:

term in(s)γ →+
I term in(s′1)γ

term in(s′1)γ →+
I termout(s

′
1)γθ

termout(s
′
1)γθ →+

I term in(s′2)σ−1γθ

Since s is a split node, I contains the rule term in(s) → term in(s′1) | true, whence
term in(s)γ →+

I term in(s′1)γ obviously holds true. Additionally, since s′1γ is succeeding

129

A. Supplementary Proofs

and terminating, it holds true that either term in(s′1γ) is nonterminating or that there
is a substitution θ such that term in(s′1)γ →+

I termout(s
′
1)γθ holds true, due to Lemma

A.2. In the former case we know that term in(s)γ is nonterminating, as it evaluates to
the nonterminating term term in(s′1)γ. Otherwise, term in(s′1)γ →+

I termout(s
′
1)γθ holds

true.

Finally, due to the construction of split edges, we see that the set of ground variables
of s′1 and s are identical, as well as that the set of ground variables of s′2 is the same as
that of s up to the renaming σ. Since the arguments to term in(s) and termout(s) are
the ground variables of s, we thus have

term in(s′2) = f ins′2
(Gs′2) = f ins′2

(Gsσ) = f ins′2
(Gs′1σ)

Hence, it holds true that termout(s
′
1)γθ evaluates to term in(s′2)σ−1γθ, since I contains

the rule termout(s
′
1)→ term in(s′2) | true.

It remains to show that σ−1γθ conforms to s′2 and that s′2σ
−1γθ is nonterminating.

The former statement holds true mainly since γθ conforms to s′1 according to Lemma
A.2. Hence, σ−1γθ conforms to the knowledge base (Gσ,Uσ, Eσ,Aσ). Thus, we only
need to show that V(σ−1γθ(X)) = ∅ for all X ∈ NextG(t,G)σ. Since σσ−1 = id , this is
the same as showing that V(γθ(X)) = ∅ holds true for all X ∈ NextG(t,G). This holds
true due to the soundness of NextG that we assumed.

The final statement to show is that s′2σ
−1γθ is nonterminating. This holds true

since we assumed that s = 〈tγ, Tγ〉 is nonterminating, but that 〈tγ〉 is terminating
and succeeding. The substitution θ is picked in Lemma A.2 as a succeeding substitu-
tion of t, whence 〈tγ, Tγ〉 evaluates to Tγθ. Since we knew that s was nonterminating,
Tγθ = s′2σ

−1γθ must be nonterminating.

Thus term in(s)γ →+
I term in(s′2)σ−1γθ holds true, s′2σ

−1γθ is nonterminating and
σ−1γθ conforms to s′2 whence Lemma A.3 holds true in this case.

Case 6: s is a parallel node If s is a parallel node and sγ is nonterminating, then sγ
has more than one goal. Either its first goal is nonterminating or one of its latter ones
is. We call the successor nodes of s s′1 and s′2, respectively.

Assume that the first goal is nonterminating. Then s′1 represents s′1γ, which is non-
terminating as well. Since I contains the rule term in(s) → term in(s′1) | true, we can
apply this rule and receive

term in(s)γ →I term in(s′1)γ

In the latter case, we can repeat the proof from the previous paragraph and receive
that s′2 represents the nonterminating concrete state s′2γ as well as the fact that

term in(s)γ →I term in(s′2)γ

holds true.

130

Case 7: s is an instance node If s is an instance node, then s has a successor node
s′ for which Conc(s) ⊆ Conc(s′) holds true. Furthermore, we know that s′σ = s holds
true, where σ is the instantiating substitution associated with the instance edge from s
to s′. Hence, s′σγ is the same as sγ, which is nonterminating. Also, since I contains the
rule term in(s)→ term in(s′)σ | true, we can apply this rule to term in(s)γ to receive that

term in(s)γ → term in(s′)γσ

holds true.

Conclusion We have shown the claim for all types of nodes s. Thus, Lemma A.3 holds
true.

131

Bibliography

[Bar15] Colin Barker. Solutions to exercises from [SS86, Chapter 8]. http://colin.
barker.pagesperso-orange.fr/sands.htm, retrieved June 1, 2015.

[BCC+05] Francisco Bueno, Daniel Cabeza, Manuel Carro, Manuel Hermenegildo,
P López-Garcıa, and Germán Puebla. The Ciao Prolog System. Techni-
cal report, The Computational logic, Languages, Implementation, and Par-
allelism (CLIP) Group. School of CS, University of Madrid. CS and ECE
Departments, University of New Mexico, July 2005.

[BCG+07] Maurice Bruynooghe, Michael Codish, John P. Gallagher, Samir Genaim,
and Wim Vanhoof. Termination Analysis of Logic Programs Through Com-
bination of Type-based Norms. ACM Transactions on Programming Lan-
guages and Systems, 29(2), April 2007.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approx-
imation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 238–252, Jan-
uary 1977.

[CC14] Patrick Cousot and Radhia Cousot. Abstract Interpretation: Past, Present
and Future. In Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 2:1–2:10. ACM, July 2014.

[CT99] Michael Codish and Cohavit Taboch. A semantic basis for the termination
analysis of logic programs. The Journal of Logic Programming, 41(1):103–
123, October 1999.

[DEDC96] Pierre Deransart, AbdelAli Ed-Dbali, and Laurent Cervoni. Prolog: The
Standard – Reference Manual. Springer-Verlag Berlin Heidelberg, 1. edition,
1996.

[DL93] Saumya K. Debray and Nai-Wei Lin. Cost Analysis of Logic Programs.
ACM Transactions on Programming Languages and Systems, 15(5):826–875,
November 1993.

[DLGH97] Saumya Debray, Pedro López-Garcıa, and Manuel Hermenegildo. Non-
Failure Analysis for Logic Programs. In Lee Naish, editor, Proceedings of

133

http://colin.barker.pagesperso-orange.fr/sands.htm
http://colin.barker.pagesperso-orange.fr/sands.htm

Bibliography

the Fourteenth International Conference on Logic Programming. MIT Press,
July 1997.

[FGP+09] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and
Stephan Falke. Proving Termination of Integer Term Rewriting. In Ralf
Treinen, editor, Rewriting Techniques and Applications, volume 5595 of
Lecture Notes in Computer Science, pages 32–47. Springer-Verlag Berlin
Heidelberg, 2009.

[GC03] Samir Genaim and Michael Codish. Terminweb: Termination analyzer for
logic programs. Sixth International Workshop on Termination, June 2003.

[Gie11] Jürgen Giesl. Termersetzungssysteme. Lecture Notes, RWTH Aachen
University, http://verify.rwth-aachen.de/tes15/TES.pdf, September
2011.

[GSSK+12] Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes, and
Carsten Fuhs. Symbolic Evaluation Graphs and Term Rewriting – A Gen-
eral Methodology for Analyzing Logic Programs. In Proceedings of the 14th
International Symposium on Principles and Practice of Declarative Pro-
gramming, pages 1–12. ACM, September 2012.

[Het15] Werner Hett. P-99: Ninety-nine prolog problems. https://sites.google.
com/site/prologsite/prolog-problems, retrieved May 28, 2015.

[HK03] Jacob M. Howe and Andy King. Efficient groundness analysis in Prolog.
Theory and Practice of Logic Programming, 3(1):95–124, 2003.

[Hug15] Colin Hughes. Project Euler. https://projecteuler.net/, retrieved June
1, 2015.

[ISO94] ISO/IEC. Information technology – Language independent arithmetic –
Part 1: Integer and floating point arithmetic, December 1994.

[ISO95] ISO/IEC. Information technology – Programming languages – Prolog – Part
1: General core, April 1995.

[KK14] Jael Kriener and Andy King. Semantics for Prolog with Cut – Revisited.
In Michael Codish and Eijiro Sumii, editors, Functional and Logic Program-
ming, volume 8475 of Lecture Notes in Computer Science, pages 270–284.
Springer International Publishing, June 2014.

[Lam15] Margaret Lamb. Examples of Prolog Operators and Arithmetic.
http://research.cs.queensu.ca/home/cisc260/2015w/examples/

Arithmetic.pl, retrieved June 1, 2015.

[LMS03] Vitaly Lagoon, Fred Mesnard, and Peter J. Stuckey. Termination Analy-
sis with Types Is More Accurate. In Catuscia Palamidessi, editor, Logic

134

http://verify.rwth-aachen.de/tes15/TES.pdf
https://sites.google.com/site/prologsite/prolog-problems
https://sites.google.com/site/prologsite/prolog-problems
https://projecteuler.net/
http://research.cs.queensu.ca/home/cisc260/2015w/examples/Arithmetic.pl
http://research.cs.queensu.ca/home/cisc260/2015w/examples/Arithmetic.pl

Bibliography

Programming, volume 2916 of Lecture Notes in Computer Science, pages
254–268. Springer-Verlag Berlin Heidelberg, 2003.

[MB05] Fred Mesnard and Roberto Bagnara. cTI: A Constraint-Based Termination
Inference Tool for ISO-Prolog. Theory and Practice of Logic Programming,
5(1):243–257, 2005.

[Min01] Antoine Miné. The Octagon Abstract Domain. In Elizabeth Burd, Peter
Aiken, and Rainer Koschke, editors, Proceedings of the Workshop on Analy-
sis, Slicing, and Transformation (AST’01), pages 310–319. IEEE CS Press,
October 2001.

[NDS05] Manh Thang Nguyen and Danny De Schreye. Polynomial Interpretations
as a Basis for Termination Analysis of Logic Programs. In Maurizio Gab-
brielli and Gopal Gupta, editors, Logic Programming, volume 3668 of Lecture
Notes in Computer Science, pages 311–325. Springer-Verlag Berlin Heidel-
berg, 2005.

[NDS07] Manh Thang Nguyen and Danny De Schreye. Polytool: Proving Termi-
nation Automatically Based on Polynomial Interpretations. In Germán
Puebla, editor, Logic-Based Program Synthesis and Transformation, volume
4407 of Lecture Notes in Computer Science, pages 210–218. Springer-Verlag
Berlin Heidelberg, 2007.

[OCM00] Enno Ohlebusch, Claus Claves, and Claude Marché. TALP: A Tool for the
Termination Analysis of Logic Programs. In Leo Bachmair, editor, Rewriting
Techniques and Applications, volume 1833 of Lecture Notes in Computer
Science, pages 270–273. Springer-Verlag Berlin Heidelberg, 2000.

[PM06] Etienne Payet and Fred Mesnard. Nontermination Inference of Logic
Programs. ACM Transactions on Programming Languages and Systems,
28(2):256–289, March 2006.

[PR04] Andreas Podelski and Andrey Rybalchenko. A Complete Method for the
Synthesis of Linear Ranking Functions. In Bernhard Steffen and Giorgio
Levi, editors, Verification, Model Checking, and Abstract Interpretation, vol-
ume 2937 of Lecture Notes in Computer Science, pages 239–251. Springer-
Verlag Berlin Heidelberg, 2004.

[SDS03] Alexander Serebrenik and Danny De Schreye. Hasta-La-Vista: Termination
Analyser for Logic Programs. In Frédéric Mesnard and Alexander Sere-
brenik, editors, Proceedings of the 13th International Workshop on Logic
Programming Environments. Katholieke Universiteit Leuven, Department
of Computer Science, December 2003.

[SESK+11] Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl, and
Carsten Fuhs. A Linear Operational Semantics for Termination and Com-

135

Bibliography

plexity Analysis of ISO Prolog, Full Version. Technical Report AIB-2011-08,
RWTH Aachen, July 2011.

[SESK+12] Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl, and
Carsten Fuhs. A Linear Operational Semantics for Termination and Com-
plexity Analysis of ISO Prolog. In Germán Vidal, editor, Logic-Based Pro-
gram Synthesis and Transformation, volume 7225 of Lecture Notes in Com-
puter Science, pages 237–252. Springer-Verlag Berlin Heidelberg, 2012.

[SGB+14] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten
Fuhs, Jera Hensel, and Peter Schneider-Kamp. Proving Termination and
Memory Safety for Programs with Pointer Arithmetic. In Stéphane Demri,
Deepak Kapur, and Christoph Weidenbach, editors, Automated Reasoning,
volume 8562 of Lecture Notes in Computer Science, pages 208–223. Springer
International Publishing, 2014.

[SKGN10] Peter Schneider-Kamp, Jürgen Giesl, and Manh Thang Nguyen. The De-
pendency Triple Framework for Termination of Logic Programs. In Danny
De Schreye, editor, Logic-Based Program Synthesis and Transformation, vol-
ume 6037 of Lecture Notes in Computer Science, pages 37–51. Springer-
Verlag Berlin Heidelberg, 2010.

[SKGST09] Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and René Thie-
mann. Automated Termination Proofs for Logic Programs by Term Rewrit-
ing. ACM Transactions on Computational Logic (TOCL), 11(1):2:1–2:52,
October 2009.

[SLH14] Alejandro Serrano, Pedro López-Garćıa, and Manuel V. Hermenegildo. Re-
source Usage Analysis of Logic Programs via Abstract Interpretation Using
Sized Types. Theory and Practice of Logic Programming, 14(4-5):739–754,
2014.

[Sma04] Jan-Georg Smaus. Termination of Logic Programs Using Various Dynamic
Selection Rules. In Bart Demoen and Vladimir Lifschitz, editors, Logic
Programming, volume 3132 of Lecture Notes in Computer Science, pages
43–57. Springer-Verlag Berlin Heidelberg, 2004.

[SS86] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press Cam-
bridge, Massachusetts, London, England, 1986.

[SSKG11] Thomas Ströder, Peter Schneider-Kamp, and Jürgen Giesl. Dependency
Triples for Improving Termination Analysis of Logic Programs with Cut.
In Maŕıa Alpuente, editor, Logic-Based Program Synthesis and Transforma-
tion, volume 6564 of Lecture Notes in Computer Science, pages 184–199.
Springer-Verlag Berlin Heidelberg, 2011.

136

Bibliography

[Stä98] Robert F. Stärk. The theoretical foundations of LPTP (a logic program the-
orem prover). The Journal of Logic Programming, 36(3):241–269, September
1998.

[Str10] Thomas Ströder. Towards Termination Analysis of Real Prolog Programs.
Diploma Thesis, RWTH Aachen University, February 2010.

[tpd15] Termination Problem Database. http://cl2-informatik.uibk.ac.at/

mercurial.cgi/TPDB, retrieved March 23, 2015.

[Tur36] Alan Mathison Turing. On computable numbers, with an application to the
Entscheidungsproblem. Journal of Math, 58(5):345–363, 1936.

[VDS11] Dean Voets and Danny De Schreye. Non-termination analysis of logic pro-
grams with integer arithmetics. Theory and Practice of Logic Programming,
11(4-5):521–536, July 2011.

137

http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB

	Introduction
	Related Work
	Contributions
	Mathematical Preliminaries

	Prolog Fragment
	Introduction to Logic Programming
	Syntax and Informal Semantics of Prolog Fragment
	Differences between Prolog Fragment and ISO-Prolog

	Concrete Semantics
	Programs
	States and Evaluation
	Equivalence to ISO Semantics

	Abstract Semantics
	The Abstract Domain
	Arithmetic States
	Abstract Program States

	Structure of Abstract Evaluation
	Evaluation of Logic Programs
	Evaluation of Arithmetic Logic Programs
	Safe Evaluation of Arithmetic Expressions
	Evaluation of Arithmetic Comparison
	Evaluation of Arithmetic Assignment

	Properties of the Abstract Evaluation Relation
	Determinacy
	Soundness

	Termination Analysis
	Termination Graphs
	Abstract Semantics
	Instantiation and Generalization
	Splitting and Parallelization
	Construction of Termination Graphs

	Transformation of Termination Graphs into Integer Transition Systems
	Integer Transition Systems
	Reduction of Termination Graphs to ITSs
	Soundness of the Reduction
	Termination Analysis of ITSs

	Practical Implementation

	Evaluation
	Compared Approaches
	Strategies Implemented in AProVE
	Other Tools for Termination

	Types of Examples
	Discussion of Results
	Performance on Logic Examples with Cut
	Performance on Arithmetic Examples

	Combining the Approaches
	Advantages and Limitations

	Conclusion
	Future Work

	Supplementary Proofs
	Bibliography

