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Abstract. In this short note, we consider the optimization variant of
the realizability problem for specifications in Prompt Linear Temporal
Logic (Prompt-LTL), which extends Linear Temporal Logic (LTL) by
the prompt eventually operator whose scope is bounded by a parametric
bound. In the realizability optimization problem, one is interested in
computing the optimal bound that allows to realize a given specification.
It is known that this problem is solvable in triply-exponential time, but
not whether it can be done in doubly-exponential time, i.e., whether it is
just as hard as solving LTL realizability. We take a step towards resolving
this problem by showing that the optimum can be approximated within
a factor of 2 in doubly-exponential time.

1 Introduction

The realizability problem for PROMPT–LTL, Linear Temporal Logic (LTL)
enriched with eventually operators of bounded scope, should be treated as an
optimization problem: determine the smallest bound on the bounded eventually
such that the specification is realizable with respect to that bound. The best ex-
act algorithms for this problem have triply-exponential running times, i.e., they
are exponentially slower than algorithms for the decision variant (“does there
exist a bound?”), which is 2Exptime-complete. We take a step towards resolv-
ing the complexity of the optimization problem by presenting an approximation
algorithm with doubly-exponential running time that returns a bound that is at
most twice as large as the optimum.

LTL is the most prominent logic for specifying reactive systems, but lacks
the ability to express time-bounds, e.g., the formula G (q → F p) expresses that
every request q has to be responded to by a response p. However, it does not
require a bound on the waiting times between requests and responses, i.e., it is
even satisfied if the waiting times diverge. Several parameterized logics where
introduced to overcome this shortcoming [1,3,5,11]. Here, we focus on the small-
est logic: PROMPT–LTL extends LTL by the prompt eventually operator FP ,
whose semantics are defined with respect to a given bound k. For example, the
formula G (q → FP p) is satisfied with respect to k, if every request is responded
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to within at most k steps. In decision problems for this logic the bound is quan-
tified existentially, e.g., the model checking problem asks for a given transition
system and a given formula whether there exists a bound k such that every trace
of the system satisfies the specification with respect to k.

Kupferman et al. showed that PROMPT–LTL has the same desirable algo-
rithmic properties as LTL. In particular, model checking is Pspace-complete
and realizability is 2Exptime-complete. Hence, one can add the prompt eventu-
ally to LTL for free. However, as already noticed by Alur et al. in their work on
Parametric LTL (which also allows the dual of the prompt eventually), one can
view decision problems for these parameterized logics as optimization problems:
instead of asking for some bound, one should search for an optimal one. They
showed that the model checking optimization problem for unipolar PLTL spec-
ifications, which includes PROMPT–LTL, can be solved in polynomial space.
Thus, even finding optimal bounds is not harder than solving the LTL model
checking problem. However, for realizability, or equivalently, for infinite games,
the situation is different: while the decision problem is known to be 2Exptime-
complete, the best algorithm for the optimization problem has triply-exponential
running time [10].

We show that an approximately optimal bound can be determined in doubly-
exponential time using the alternating color technique, which was introduced by
Kupferman et al. to solve the decision problems for PROMPT–LTL. For the sake
of simplicity, we present the algorithm for PROMPT–LTL, but it is applicable
to parametric LTL and parametric LDL as well.

2 Definitions

Throughout the paper, we fix a finite set P of atomic propositions. The non-
negative integers are denoted by N.

2.1 Prompt-LTL

The formulas of PROMPT–LTL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | FP ϕ,

where p ∈ P . We use ϕ→ ψ as shorthand for ¬ϕ ∨ ψ, where we require ϕ to be
a (negated) atomic proposition and identify ¬¬p with p.

The set of subformulas of a PROMPT–LTL formula ϕ is denoted by cl(ϕ)
and we define the size |ϕ| of ϕ to be the cardinality of cl(ϕ).

In order to evaluate PROMPT–LTL formulas, we need to fix a bound k ∈ N

to evaluate the prompt eventually operator. The satisfaction relation is defined
for an ω-word w ∈

(

2P
)ω

, a position n of w, a bound k, and a PROMPT–LTL
formula. The definition is standard for the classical operators and defined as
follows for the prompt eventually:

– (w, n, k) |= FP ϕ if and only if there exists a j in the range 0 ≤ j ≤ k such
that (w, n+ j, k) |= ϕ.
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For the sake of brevity, we write (w, k) |= ϕ instead of (w, 0, k) |= ϕ and say
that w is a model of ϕ with respect to k. Note that ϕ is an LTL formula [6], if
it does not contain the prompt eventually. In this case, we write w |= ϕ.

2.2 Prompt-LTL Realizability

Throughout this subsection, we fix a partition (I, O) of P . An instance of the
PROMPT–LTL realizability problem over (I, O) consists of an PROMPT–LTL
formula ϕ over P = I ∪ O and asks to determine the winner in the following
game, played between Player I and Player O in rounds n = 0, 1, 2, . . .: in round n,
Player I picks in ⊆ I and afterwards Player O picks on ⊆ O. The resulting play
is ρ = (i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · ∈ (2P )ω.

A strategy for Player O is a mapping σ : (2I)+ → 2O. A play ρ as above is
consistent with σ, if on = σ(i0 · · · in) for every n. We say that σ is realizes ϕ
with respect to k ∈ N, if every play that is consistent with σ satisfies ϕ with
respect to k. Formally, the PROMPT–LTL realizability problem asks, given a
PROMPT–LTL formula ϕ, whether there is a strategy σ and a k such that σ
realizes ϕ with respect to k and, if yes, to compute such a strategy. In this case,
we say ϕ is realizable.

The LTL realizability problem is defined by restricting the specifications ϕ to
LTL formulas and is 2Exptime-complete [7]. It turns out that PROMPT–LTL
realizability is not harder.

Theorem 1 ([5]). The PROMPT–LTL realizability problem is 2Exptime-com-
plete. Furthermore, if ϕ is realizable with respect to some k, then also with respect
to some k that is doubly-exponential in |ϕ|.

Furthermore, the doubly-exponential upper bound on the necessary k to
realize ϕ is tight [10]. Also, if ϕ is realizable with respect to some k, then also
with respect to every larger k′.

2.3 The Alternating-color Technique

Our algorithm presented in the next section is based on an application of Kupfer-
man et al.’s alternating-color technique to PROMPT–LTL realizability. We recall
the technique in this subsection.

Let p /∈ P be a fixed fresh proposition. An ω-word w′ ∈
(

2P∪{p}
)ω

is a p-

coloring of w ∈
(

2P
)ω

if w′
n∩P = wn, i.e., wn and w′

n coincide on all propositions
in P . We say that a position is a change point, if n = 0 or if the truth value of p
at positions n− 1 and n differs. A p-block is an infix w′

m · · ·w′
n of w′ such that

m and n+ 1 are adjacent change points. Let k ≥ 1: we say that w′ is k-spaced,
if the truth value of p changes infinitely often and each p-block has length at
least k; we say that w′ is k-bounded, if each p-block has length at most k (which
implies that the truth value of p changes infinitely often).

Given a PROMPT–LTL formula ϕ, let rel(ϕ) denote the formula obtained
by inductively replacing every subformula FP ψ by

(p→ (pU (¬pU rel(ψ)))) ∧ (¬p → (¬pU (pU rel(ψ)))).
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Intuitively, instead of requiring ψ to be satisfied within a bounded number of
steps, rel(ϕ) requires it to be satisfied within at most one change point. The
relativization rel(ϕ) is an LTL formula of size O(|ϕ|). Kupferman et al. showed
that ϕ and rel(ϕ) are “equivalent” on ω-words which are bounded and spaced.

Lemma 1 ([5]). Let ϕ be a PROMPT–LTL formula.

1. If (w, k) |= ϕ, then w′ |= rel(ϕ) for every k-spaced p-coloring w′ of w.
2. Let k ∈ N. If w′ is a k-bounded p-coloring of w such that w′ |= rel(ϕ), then

(w, 2k) |= ϕ.

3 Approximating Optimal Bounds in Prompt-LTL

Realizability

Determining whether a PROMPT–LTL formula ϕ is realizable with respect to
some k induces a natural optimization problem: determine the smallest such k.
The optimum (and a strategy realizing ϕ with respect to the optimum) can be
computed in triply exponential time [10].

However, it is an open problem whether the optimization problem can be
solved in doubly-exponential time, i.e., whether optimal PROMPT–LTL realiz-
ability is no harder than LTL realizability. We take a step towards resolving the
problem by showing that the optimum can be approximated within a factor of
2 in doubly-exponential time.

The alternating-color technique is applied to PROMPT–LTL realizability
problems by replacing ϕ by its relativization rel(ϕ) and by letting Player 0
determine the truth value of the distinguished proposition p for every position
by adding it to the propositions in O. The full details are explained in [5], where
the following statements are shown to prove the application of the alternating
color technique to be correct. Here, ψk is an LTL formula of linear size in k that
characterizes k-boundedness, i.e., w′ |= ψk if, and only if, w′ is a k-bounded
p-coloring.

Lemma 2 ([5]). Let ϕ be a PROMPT–LTL formula and let k ∈ N.

1. A strategy realizing ϕ with respect to k can be turned into a strategy realizing
rel(ϕ) ∧ ψk.

2. A strategy realizing rel(ϕ)∧ψk can be turned into a strategy realizing ϕ with
respect to 2k.

Furthermore, if k is not too large, we can check the realizability of rel(ϕ)∧ψk

in doubly-exponential time.

Lemma 3. The following problem is in 2Exptime: Given a PROMPT–LTL
formula ϕ and a natural number k that is at most doubly-exponential in |ϕ|,
is rel(ϕ) ∧ ψk realizable? Furthermore, one can compute a realizing the formula
strategy (if one exists) in doubly-exponential time.
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Proof. We reduce the problem to a parity game (see [4] for background): First,
we construct a deterministic parity automaton recognizing the language

{ρ ∈ (2P∪{p})ω | ρ |= rel(ϕ)}

and intersect it with a deterministic safety automaton that recognizes

{ρ ∈ (2P∪{p})ω | ρ |= ψk}.

It is known that the first automaton is of doubly-exponential size and has ex-
ponentially many colors (both in |ϕ|) while the second one is of linear size in
k. Thus, the resulting deterministic parity automaton A recognizing the inter-
section is of doubly-exponential size and linear size in k and has exponentially
many colors.

Next, we split a transition of A labeled by A ⊆ P ∪{p} into two, the first one
labeled by A ∩ I and the second one by A \ I. By declaring the original states
of A to be Player I states and the new intermediate states obtained by splitting
the transitions to be Player O states, we obtain a parity game that is won by
Player O from the initial state of A if, and only if, rel(ϕ) ∧ ψk is realizable.
Additionally, a winning strategy for Player O in the parity game can be turned
into a strategy realizing rel(ϕ) ∧ ψk.

This parity game is of doubly-exponential size with exponentially many col-
ors, both in |ϕ|. The winner and a winning strategy for her in such a game can
be computed in doubly-exponential time [8]. ⊓⊔

Relying on Lemma 2 and Theorem 1 we give an approximation algorithm
for finding optimal bounds for PROMPT–LTL realizability. Given an input ϕ,
the algorithm first checks whether ϕ is realizable with respect to some ϕ. If
not, then the optimum is ∞ by convention. Otherwise, we obtain a doubly-
exponential upper bound u on the optimum. Now, the algorithm determines the
smallest k ≤ u such that rel(ϕ)∧ψk) is realizable and returns 2k. The emptiness
test and determining the realizability of rel(ϕ)∧ψk) can be executed in doubly-
exponential time as argued above. As the latter problem has to be solved at most
doubly-exponentially often1, the overall running time is doubly-exponential as
well. Furthermore, due to Lemma 2.2, we even obtain a strategy realizing ϕ with
respect to 2k.

It remains to argue that the algorithm approximates the optimum kopt ≤ u
within a factor of 2: let 2k be the output of the approximation algorithm, i.e.,
k is minimal with the property that rel(ϕ) ∧ ψk) is realizable. Thus, Lemma 2.2
implies kopt ≤ 2k. Conversely, ϕ being realizable with respect to kopt implies that
(rel(ϕ) ∧ ψkopt

is realizable due to Lemma 2.1, i.e., k ≤ kopt due to minimality
of k.

Altogether, we obtain k ≤ kopt ≤ 2k. Recall that the algorithm returns
2k, i.e., ϕ is realizable with respect to the returned value due to monotonicity.

1 With binary search, this can be improved to exponentially often. However, the run-
ning time of the realizability check depends on k, which is typically small.
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Furthermore, the approximation ratio 2k
2k−kopt

is bounded by

2k

2k − kopt
≤

2k

2k − k
= 2.

Theorem 2. The optimization problem for PROMPT–LTL realizability can be
approximated within a factor of 2 in doubly-exponential time. As a byproduct,
one obtains a strategy witnessing the approximatively optimal bound.

4 Beyond Prompt-LTL

In this section, we argue that the approximation algorithm presented in the
previous section can be extended to more expressive parametric temporal logics,
e.g., parametric LTL (PLTL) and parametric LDL (PLDL).

PLTL [1] extends PROMPT–LTL by allowing multiple bounds on the prompt
eventually and by adding the dual operator, the parameterized always. Formally,
one has operators F≤z and G≤z, where z is some variable. Semantics are defined
with respect to a variable valuation mapping the variables to natural numbers.
The formula F≤zϕ is satisfied, if ϕ holds within the next α(z) steps. Dually,
the formula G≤zϕ is satisfied, if ϕ holds for at least the next α(z) steps. PLTL
model checking is Pspace-complete [1] while PLTL realizability is 2Exptime-
complete [10]2, i.e., both problems are not harder than their counterparts for
LTL and PROMPT–LTL.

The realizability optimization problems are only considered for the unipolar
fragment of PLTL, i.e., for formulas that only contain parameterized eventually
operators (PLTLF formulas) or only parameterized always operators (PLTLG

formulas), but not both. For PLTLF formulas, one is interested in minimizing the
minimal or maximal parameter value. Dually, for PLTLG formulas, one is inter-
ested in maximizing the minimal or maximal parameter value. These problems
are solvable in triply-exponential time [10], which is shown by a reduction to the
PROMPT–LTL optimization problem that preserves the exact optimum. Hence,
the PLTL optimization problems can be approximated in doubly-exponential
time as well.

Theorem 3. The optimization problems for unipolar PLTL realizability can be
approximated within a factor of 2 in doubly-exponential time. As a byproduct,
one obtains a strategy witnessing the approximatively optimal bound.

The logic PLDL [3] is the parameterized extension of Linear Dynamic Logic
(LDL) [2,9]. The latter replaces the temporal operators of LTL by an eventually
and an always operator that are guarded by regular expressions: 〈r〉ϕ holds,
if there is a prefix that matches the regular expression r such that the corre-
sponding suffix satisfies ϕ. Dually, [r ]ϕ holds, if for every prefix that matches r,

2 The results there are presented for infinite games in finite arenas. However, they are
easily transferable to the realizability setting.
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the corresponding suffix satisfies ϕ. LDL captures the ω-regular languages while
retaining the desirable algorithmic properties of LTL [2,9]

As expected, PLDL allows to equip these operators with variables that bound
the length of the prefixes under consideration. All decision problems for PLDL
are not harder than their counterparts for PLTL [3]. In particular, the alternating
color technique can be lifted to PLDL and analogues of Lemma 2 and Theorem 1
hold as well. Hence, the approximation algorithm presented above is applicable
to the optimization problems for unipolar PLDL realizability, which are defined
as expected.

Theorem 4. The optimization problems for unipolar PLDL realizability can be
approximated within a factor of 2 in doubly-exponential time. As a byproduct,
one obtains a strategy witnessing the approximatively optimal bound.
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