
ar
X

iv
:1

51
2.

05
17

7v
1

 [
cs

.L
O

]
 1

6
D

ec
 2

01
5

Visibly Linear Dynamic Logic⋆

Alexander Weinert and Martin Zimmermann

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
{weinert, zimmermann}@react.uni-saarland.de

Abstract. We introduce Visibly Linear Dynamic Logic (VLDL), which
is an extension of Linear Dynamic Logic (LDL) with temporal operators
that are guarded by nondeterministic visibly pushdown automata. We
prove that VLDL describes exactly the visibly pushdown languages over
infinite words, which makes it strictly more powerful than LTL and LDL
and able to express properties of recursive programs. The main tech-
nical contribution of this work is a translation of VLDL formulas into
nondeterministic visibly pushdown automata with Büchi acceptance of
exponential size via one-way alternating jumping automata.

This translation yields exponential-time algorithms for satisfiability, va-
lidity and model checking. We also show that visibly pushdown games
with VLDL winning conditions are solvable in triply-exponential time.
We show all of these problems to be complete for their respective com-
plexity classes. Furthermore, we prove that using deterministic pushdown
automata as guards yields undecidable decision problems.

1 Introduction

Linear Temporal Logic (LTL) [14] is widely used for the specification of system
behavior. Its popularity is mainly due to its simple syntax and intuitive seman-
tics, as well as its exponential compilation property, i.e., for each LTL formula
there exists an equivalent Büchi automaton of exponential size. Due to the latter
property, there exist algorithms for model checking of properties specified in LTL
in polynomial space and for checking realizability in doubly exponential time.

LTL, however, has the significant weakness of not even being powerful enough
to express all ω-regular properties. There are several approaches to address this
shortcoming, by augmenting LTL, for example, with regular expressions [11],
finite automata on infinite words [16], and right-linear grammars [17]. We con-
centrate on the approach of Linear Dynamic Logic (LDL) [15], which extends the
globally- and eventually-operators of LTL with regular expressions with tests.
While the LTL-formula Fψ simply means “either now, or at some point in the
future, ψ holds”, the corresponding LDL operator 〈r〉ψ means “There exists an
infix starting at the current position, which matches r, and ψ holds after that
prefix”.

⋆ Supported by the projects “TriCS” (ZI 1516/1-1) and “AVACS” (SFB/TR 14) of
the German Research Foundation (DFG).

http://arxiv.org/abs/1512.05177v1

The logic LDL captures the ω-regular languages. In spite of its greater ex-
pressive power, LDL still enjoys the exponential compilation property, whence
there exist algorithms for model checking and realizability in polynomial space
and doubly-exponential time, respectively. While the expressive power of LDL
is sufficient for many specifications, it is not possible to reason about recursive
properties of systems, such as statements concerning the call stack. In this work,
we address this shortcoming by combining the temporal operators of LDL with
visibly pushdown automata to obtain visibly Linear Dynamic Logic (VLDL).

A visibly pushdown automaton (VPA) [1] is a pushdown automaton that
has a fixed partition of the input alphabet into calls, returns and local actions.
In contrast to traditional pushdown automata, VPAs may only push symbols
onto the stack when reading calls and may only pop symbols off the stack when
reading returns. Moreover, they may not inspect the topmost symbol of the
stack when not reading returns. Thus, the height of the stack after reading a
word is known in advance for all VPAs using the same partition of the input
alphabet. Due to this, VPAs are closed under union and intersection, as well
as complementation. These automata are known to allow for specification of
many properties of interest in program verification such as “there are infinitely
many positions at which at most two functions are active” or “every time the
program enters a module m, if p holds true, then p holds true upon exiting
m” [1]. By combining the temporal operators of LDL with VPAs, VLDL allows
for modular specification of such properties while still retaining the expressive
power of VPAs.

Our contributions Firstly, we describe translations from VPAs to VLDL and
vice versa. For the direction from automata to logic we use a translation of VPAs
into deterministic parity stair automata (PSA) by Löding et al. [12], which we
then translate into VLDL formulas. For the direction from logic to automata we
translate VLDL formulas into one-way alternating jumping automata, which are
known to be translatable into VPAs of exponential size due to Bozzelli [4].

Secondly, we show that the satisfiability problem and the validity problem
are ExpTime-complete. Membership in ExpTime follows from the previously
mentioned constructions, while we show ExpTime-hardness of the problems by
adapting a proof of ExpTime-hardness of model checking pushdown systems
against LTL specifications by Bouajjani et al. [3].

Thirdly, we show that model checking visibly pushdown systems against
VLDL specifications is ExpTime-complete as well, where membership in Exp-

Time and ExpTime-hardness follow from ExpTime-membership of the empti-
ness problem and ExpTime-hardness of the validity problem for VLDL.

As a fourth result, we show that solving visibly pushdown games against
VLDL winning conditions is 3ExpTime-complete. Membership in 3ExpTime

follows from the aforementioned translation of VLDL formulas into VPAs and
the membership of solving pushdown games against VPA winning conditions
in 2ExpTime due to Löding et al. [12]. 3ExpTime-hardness of the problem is

2

due to a reduction from the problem of solving pushdown games against LTL
specifications, again due to Löding et al [12].

Finally, we show that replacing the visibly pushdown automata used as
guards in VLDL by deterministic pushdown automata yields a logic with an
undecidable emptiness problem.

These results show that VLDL allows for the concise specification of impor-
tant properties in a logic with intuitive semantics. In the case of the satisfiability
problem, we move from PSpace-completeness to ExpTime-completeness by re-
placing regular expressions with VPAs. For the realizability problem, we gain
an exponent and move from 2ExpTime-completeness of the problem for LDL
to 3ExpTime-completeness of the problem for VLDL. Moreover, strengthen-
ing VLDL by using traditional pushdown automata results in a logic with an
undecidable satisfiability problem, even if we restrict ourselves to deterministic
pushdown automata.

Related Work There exist other approaches to using visibly pushdown lan-
guages for specifications, most notably CaRet [2], and, more recently, VLTL
[5]. While VLTL captures the class of visibly pushdown languages, CaRet cap-
tures only a strict subset of it. For both logics there exist exponential transla-
tions to VPAs. In this work, we provide exponential translations from VLDL
to VPAs and vice versa. Hence, CaRet is strictly less powerful than VLDL, but
every CaRet formula can be translated into an equivalent VLDL formula with
a doubly-exponential blowup. Similarly, every VLTL formula can be translated
into an equivalent VLDL formula and vice versa, both with doubly-exponential
blowup.

Other logical characterizations of visibly pushdown languages include char-
acterizations by monadic second order logic augmented with a binary matching
predicate (MSOµ)[1] and by a fixpoint logic [4]. Even though these logics also
capture the class of visibly pushdown languages, they feature neither an intuitive
syntax nor semantics and thus are less usable than VLDL.

Temporal operators are combined with visibly pushdown automata in an
extension of the branching-time logic PDL [13]. Due to the different setting,
however, this logic is incomparable to VLDL. In contrast to the results for VLDL,
the decision problems for the logic from [13] are 2ExpTime-complete.

2 Preliminaries

In this section we introduce the basic notions used in the remainder of this work,
namely (nondeterministic) visibly pushdown automata and related concepts. A

pushdown alphabet Σ̃ = (Σc, Σr, Σl) is a finite set Σ that is partitioned into
calls Σc, returns Σr and local actions Σl. We write w = w0 · · ·wn and α =
α0α1α2 · · · to denote finite and infinite words, respectively. Additionally, we
denote the stack height reached by any automaton after reading w by sh(w)
which is defined inductively as sh(ε) = 0, sh(wc) = sh(w) + 1 for c ∈ Σc,
sh(wr) = max{0, sh(w) − 1} for r ∈ Σr, and sh(wl) = sh(w) for l ∈ Σl. We

3

say that a call c at some position k of a word w is matched if there exists
an l > k with wl ∈ Σr and sh(w0 · · ·wk) = sh(w0 · · ·wl) and call the return
at the smallest such position l the matching return of c. Moreover, we define
steps(α) := {k ∈ N | ∀l ≥ k. sh(α0 · · ·αl) ≥ sh(α0 · · ·αk)} as those positions
that reach a new lower bound for the stack height. Note that 0 ∈ steps(α) and
that steps(α) is infinite for all infinite words α. For finite words w, steps(w) is
finite and |w| ∈ steps(w).

Visibly Pushdown Systems We consider several models of automata, all
of which have visibly pushdown systems as their underlying technical core. A
visibly pushdown system (VPS) S = (Q, Σ̃, Γ,∆) consists of a finite set of states

Q, a pushdown alphabet Σ̃, a stack alphabet Γ , which contains a stack-bottom
marker ⊥, and a transition relation

∆ ⊆ (Q×Σc ×Q × (Γ \ {⊥})) ∪ (Q ×Σr × Γ ×Q) ∪ (Q×Σl ×Q).

A configuration (q, γ) of S is a pair of a state q ∈ Q and a stack content γ ∈
(Γ \ {⊥})∗ · ⊥. The VPS S induces the configuration graph GS = (Q × Γ ∗, E)
with E ⊆ ((Q × Γ ∗) × Σ × (Q × Γ ∗)) and ((q, γ), a, (q′, γ′)) ∈ E if and only if
either

– a ∈ Σc, (q, a, q
′, A) ∈ ∆, and Aγ = γ′,

– a ∈ Σr, (q, a,⊥, q′) ∈ ∆, and γ = γ′ = ⊥,
– a ∈ Σr, (q, a, A, q

′) ∈ ∆, A 6= ⊥, and γ = Aγ′, or
– a ∈ Σl, (q, a, q

′) ∈ ∆, and γ = γ′.

For an edge e = ((q, γ), a, (q′, γ′)) we say that a is the label of e. A run
π = (q0, γ0) · · · (qn, γn) of S on the word w = w0 · · ·wn−1 is a sequence of
configurations such that for all i ∈ [0;n − 1] there is an αi labeled edge from
(qi, γi) to (qi+1, γi+1) in GS . We say that S is deterministic if for each state q,
each stack content γ and each symbol a ∈ Σ there exists at most one outgoing
a-labeled edge from (q, γ) in GS . When drawing VPS’s, we write ↓A, ↑A and →
to denote pushing A onto the stack, popping A from the stack, and local actions,
respectively.

(Büchi) Visibly Pushdown Automata A (nondeterministic) visibly push-

down automaton (VPA) [1] is a six-tuple A = (Q, Σ̃, Γ,∆,QI , F), where the

four-tuple (Q, Σ̃, Γ,∆) is a VPS and QI , F ⊆ Q are sets of initial and final
states. A run of A is called initial if (q0, γ0) = (qI ,⊥) for some qI ∈ QI . A finite
run π = (q0, γ0) · · · (qn, γn) is accepting if qn ∈ F . A Büchi VPA (BVPA) is syn-
tactically identical to a VPA, but we only consider runs over infinite words. An
infinite run is Büchi-accepting if it visits states in F infinitely often. A (B)VPA
A accepts a word w(α) if there exists an initial (Büchi-)accepting run of A on
w(α). The family of languages accepted by (B)VPA is called (ω-)VPL. If it is
clear from the context, we omit the prefix “Büchi” and call both models VPA.

4

3 Visibly Linear Dynamic Logic

We fix a finite set P of atomic propositions and a partition Σ̃ = (Σc, Σr, Σl) of
2P throughout the remainder of this work. The syntax of VLDL is defined by
the grammar

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈A〉ϕ | [A]ϕ,

where p ∈ P and A ranges over testing (nondeterministic) visibly pushdown au-

tomata (TVPA) over the fixed alphabet Σ̃. A TVPA A = (Q, Σ̃, Γ,∆,QI , F, t)

consists of a VPA (Q, Σ̃, Γ,∆,QI , F) and a partial function t mapping states

to VLDL formulas over Σ̃. 1 Intuitively, such an automaton accepts a sub-
string αi · · ·αj of an infinite word α = α0α1α2 · · · if the embedded VPA accepts
αi . . . αj and, if the state qk of the accepting run (q0, γ0) · · · (qj−i+1, γj−i+1) is
marked with the test ϕ by t, then the suffix αi+kαi+k+1αi+k+2 · · · of α satisfies
ϕ.

We write cl(ϕ) to denote all subformulas of ϕ, including those contained as
tests in automata and their subformulas, and define the size of ϕ as the sum of
|cl(ϕ)| and the sum of the numbers of states of the automata contained in ϕ. As
shorthands, we use tt := p∨¬p and ff := p∧¬p for some atomic proposition p.
Even though the testing function t is defined as a partial function, we generally
assume it is total by setting t : q 7→ tt if q /∈ domain(t).

Let α = α0α1α2 · · · be an infinite word over 2P and let k ∈ N be a position in
α. We define the semantics of VLDL inductively over the structure of a formula
ϕ via

– (α, k) |= p if p ∈ αk,
– (α, k) |= ¬ϕ if (α, k) 6|= ϕ,
– (α, k) |= ϕ0 ∧ ϕ1 if (α, k) |= ϕ0 and (α, k) |= ϕ1, and dually for ϕ0 ∨ ϕ1,
– (α, k) |= 〈A〉ϕ if there exists l ≥ k s.t. (k, l) ∈ RA(α) and (α, l) |= ϕ,
– (α, k) |= [A]ϕ if for all l ≥ k, (k, l) ∈ RA(α) implies (α, l) |= ϕ,

where the relation RA(α) contains all pairs (k, l) such that the TVPA A accepts
αk . . . αl−1. Formally, RA(α) is defined as

RA(α) := {(k, l) ∈ N× N |

∃ acc. run (q0, σ0) · · · (ql−k, σl−k) of A on αk · · ·αl−1

and ∀m ∈ [0; l − k]. (α, l +m) |= t(qm)}.

We write α |= ϕ as a shorthand for (α, 0) |= ϕ and say that α is a model of
ϕ in this case. The language of ϕ is defined as L(ϕ) := {α ∈ (2P)ω | α |= ϕ}.
As usual, disjunction and conjunction are dual, as well as the 〈A〉-operator and
the [A]-operator, which can be dualized using De Morgan’s law and the logical
identity [A]ϕ ≡ ¬〈A〉¬ϕ. Note that the latter identity only dualizes the temporal

1 Obviously, there are some restrictions on the nesting of tests into automata, e.g.,
ϕ = 〈A〉ϕ′ may not appear as a test in A.

5

operator, but does not require complementation of the automaton guarding the
operator. We additionally allow the use of derived boolean operators such as →
and ↔, as they can easily be reduced to the basic operators ∧, ∨ and ¬.

The logic VLDL combines the expressive power of visibly pushdown au-
tomata with the intuitive temporal operators of LDL. Thus it allows for concise
and intuitive specifications of many interesting properties in program verifica-
tion [1]. In particular, VLDL allows for the specification of properties of recursive
programs, which makes it more expressive than both LDL and LTL. In fact, we
can embed LDL in VLDL in linear time. We show strictness of this inclusion in
Section 5.

Lemma 1. For any LDL formula ψ over P we can effectively construct a VLDL

formula ϕ over Σ̃ := (∅, ∅, 2P) in linear time such that L(ψ) = L(ϕ).

Proof. Let ψ be an LDL formula over the alphabet P . The only interesting case
is ψ = 〈r〉ψ′, since all other cases follow from closure properties and duality. We

obtain the VLDL formula ϕ′ over Σ̃ equivalent to ψ′ by induction and construct
the finite automaton Ar from r using the construction from [9]. The automaton

Ar contains tests, but is not equipped with a stack. Since Σ̃ = (∅, ∅, 2P), we can
interpret Ar as a TVPA without changing the language is recognizes. We call
the TVPA A′

r and define ϕ = 〈A′
r〉ϕ

′. ⊓⊔

Since LTL can be in turn embedded in LDL, Lemma 1 directly implies the
embeddability of LTL in VLDL.

Proposition 1. For any LTL formula ψ over P we can effectively construct a

VLDL formula ϕ over Σ̃ := (∅, ∅, 2P) in linear time such that L(ψ) = L(ϕ).

4 Examples

As we show in Section 5, VLDL captures the visibly pushdown languages and
thus, it is strictly more expressive than traditional Büchi automata. In fact,
VLDL allows for concise formulations of a number of important properties of
recursive programs in program verification. We give some examples of such prop-
erties and their formalization in this section.

Example 1. Assume that we have a program that uses some module m and has
the observable atomic propositions P := {callm, returnm, p}, where callm and
returnm denote calls to and returns from m, while p is some arbitrary atomic
proposition.

We now construct a formula that describes the condition “If p holds true
immediately after entering m, it shall hold as well immediately after the cor-
responding return from m” [2]. To this end, we pick the pushdown alphabet

Σ̃ = (Σc, Σr, Σl) := ({callm}, {returnm}, {p}). For the sake of readability we
ignore the other members of 2P . The formula ϕ := [Ac](p→ 〈Ar〉p) then captures
the condition, with Ac and Ar as shown in Figure 1. The automaton Ac accepts

6

Ac

callm, ↓A
returnm, ↑A

p,→

callm, ↓A
Ar

callm, ↓A
returnm, ↑A

p,→

returnm, ↑⊥

Fig. 1. The automata Ac and Ar for Example 1.

all finite words ending with a call to m, whereas the automaton Ar accepts all
words ending with a single unmatched return.

The formula ϕ has the subformulas cl(ϕ) = {ϕ,¬p ∨ 〈Ar〉p,¬p, p} and is of
size |ϕ| = |cl(ϕ)| + |Ac|+ |Ar| = 3 + 2 + 2 = 7.

Note that the stack is simply used as a counter in the previous example.
This technique suffices for the specification of other properties as well, such as
tracking the path through the directory structure instead of the call stack.

Example 2. We consider a simplified system model, in which a user can move
through directories and obtain and relinquish superuser rights. To this end, we
consider the set of atomic propositions P = {cd↓, cd↑, sudo, logout}, where
cd↓ denotes moving into a subdirectory of the current working directory, cd↑
denotes moving to the parent directory, sudo denotes the acquisition of ele-
vated privileges, and logout denotes relinquishing them. We again only de-
fine the pushdown alphabet for singleton subsets of P for readability and pick
Σ̃ := ({cd↓}, {cd↑}, {sudo, logout}) in order to formalize the property “If the
program acquires elevated privileges, it has to relinquish them before moving
out of its current directory” [8].

We use the stack as a counter using the stack alphabet Γ := {⊥, A}. Then
the formula ϕ := [Apriv]¬(〈Apar 〉tt), specifies the property above, where Apriv

accepts all prefixes of runs of the program that end with the acquisition of
elevated privileges, and Apar tracks the depth of the current working directory.
Figure 2 depicts the automata Apriv and Apar .

While the previous example shows how to handle programs that can simply
request a single set of elevated rights, in actual systems the situation is more
intricate. In reality, a program may request the rights of any user of the system
by logging in as that user. When logging out, the rights revert to those of the
previously logged in user. In the following example we use the stack to keep track
of the currently logged in user and ensure that system calls are not executed with
elevated privileges.

Example 3. In this example we remove some of the simplifications of the pre-
vious example and model the login mechanism of an actual system more pre-
cisely. To this end, let P = {exec, logins, loginu, logout}, where exec de-
notes the execution of a system call, logins and loginu denote the login as

7

Apriv

cd↓, ↓ A

cd↑, ↑ A

cd↑, ↑ ⊥
logout,→

sudo,→

Apar

cd↓, ↓ A

cd↑, ↑ A

cd↑, ↑ ⊥

logout,→

Fig. 2. The automata Apriv and Apar for Example 2.

the superuser and some other user, respectively, and logout denotes logging the
current user out and reverting to the previous user. The pushdown alphabet
Σ̃ := ({logins, loginu}, {logout}, {exec}) allows us to keep track of the stack
of logged in users. We want to specify the property “Whenever the program has
obtained elevated privileges, it does not leave the directory it originally obtained
these privileges in.”

Recall that visibly pushdown automata are not allowed to inspect the top
of the stack. Thus, in order to correctly trace the currently logged in user, we
need to store both the current user and the previously logged in one on the
stack. The automaton Auser performs this bookkeeping using the stack alphabet
Γ := {(c, p) | c, p ∈ {s, u}}, where c denotes the currently logged in user, and p
denotes the previously logged in user. It moves to the state u when a normal
user is logged in and to state s when a superuser is logged in.

Auser

u s

exec,→
login

u
, ↓(u, u)

logout, ↑(u, u)

exec,→
login

s
, ↓(s, s)

logout, ↑(s, s)login
s
, ↓(s, u)

logout, ↑(u, s)

login
u
, ↓(u, s)

logout, ↑(s, u)

Fig. 3. The automaton Auser , which keeps track of the status of the currently logged
in user.

Since the only action available to the program in this example apart from
logging users in or out is to execute system calls, we do not need an automaton
to capture the undesired behavior, but can simply use the atomic proposition
exec in the formula. Hence, the formula ϕ := [Auser]¬exec defines the desired
behavior.

8

Due to the modular nature of VLDL, we can easily reuse existing automata
and subformulas. Consider, for example, that we want to make sure that supe-
rusers neither execute system calls, nor leave the directory they were in when
they acquired superuser-privileges. Using some simple modifications to Auser

and Apar to work over an extended set of atomic propositions, we can specify
the conjunction of the previously defined behaviors without having to construct
new automata from scratch.

5 VLDL Captures ω-VPL

In this section we show that VLDL is as expressive as ω-VPL. Recall that a
language L is in ω-VDL if and only if there exists a BVPA recognizing L. We
provide effective constructions for transforming BVPAs into equivalent VLDL
formulas and vice versa. This shows that VLDL captures ω-VPL.

Theorem 1. For any language of infinite words L ⊆ Σω there exists a BVPA

A with L(A) = L if and only if there exists a VLDL formula ϕ with L(ϕ) = L.
There exist effective translations for both directions.

In Section 5.1 we show the construction of VLDL formulas from BVPAs
via deterministic parity stair automata. In Section 5.2 we construct one-way
alternating jumping automata from VLDL formulas, which are known to be
translatable into equivalent BVPAs. Both constructions incur an exponential
blowup in size. In the construction of BVPAs from VLDL formulas, this blowup
is shown to be unavoidable.

5.1 From Stair Automata to VLDL

In this section we construct a VLDL formula of exponential size that is equiv-
alent to a given BVPA A. To this end, we first transform A into an equivalent
deterministic parity stair automaton (DPSA) [12] Ast . A parity stair automaton

A = (Q, Σ̃, Γ,∆,QI , Ω) consists of

– a VPS S = (Q, Σ̃, Γ,∆),
– a set of initial states QI ,
– and a coloring Ω : Q→ N.

It is called deterministic if S is deterministic and we have |QI | = 1.
A run ρα of A on an infinite word α is a run of the VPS S on α. The

run ρα = (q0, σ0)(q1, σ1)(q2, σ2) · · · on the word α induces a sequence of colors
Ω(ρα) := Ω(qk0)Ω(qk1)Ω(qk2) · · · , where k0 < k1 < k2 · · · is an ordered enumer-
ation of the steps of α. A stair automaton A accepts an infinite word α if there
exists an initial run ρ of A on α such that the largest color appearing infinitely
often in Ω(ρ) is even. The language L(A) of a parity stair automaton A is the
set of all words α that are accepted by A.

9

Lemma 2 ([12]). For every BVPA A there exists an effectively constructible

equivalent deterministic parity stair automaton Ast . The size of Ast is exponen-

tial in the size of A.

Since the stair automaton Ast equivalent to a BVPA A is deterministic, the
acceptance condition collapses to the requirement that the unique run of Ast

on α must be accepting. Another important observation is that every time Ast

reaches a step of α, it is possible to clear the stack. Since the topmost element
of the stack will never be popped after reaching a step, and since VPAs cannot
inspect the top of the stack, neither this symbol, nor the ones below it have
any influence on the remainder of the run. We use these two observations to
characterize acceptance by Ast by a VLDL formula.

Lemma 3. For each DPSA Ast there exists an effectively constructible equiva-

lent VLDL formula ϕAst
. The size of ϕAst

is quadratic in the number of states

of A.

Proof. We first construct a formula ϕt
st such that (α, k) |= ϕt

st if and only if
k ∈ steps(α). Let At

st be a VPA that accepts upon reading an unmatched return,
constructed similarly to Ar from Example 1. We define ϕt

st := [At
st]ff, since we

demand that the stack height never drops below the current level, i.e., Ast never
accepts. Then ϕt

st has the desired property.
In the remainder of this proof, we write qAq′ to denote the TVPA that we

obtain from combining the VPS S of A with the sets of initial and final states
{q} and {q′}, as well as the testing function t that marks all states with the
test tt. Additionally we require that qAq′ does not accept the empty word. This
is trivial if q and q′ are different, and easily achieved by adding a new initial
state if q = q′. Furthermore, we define Qeven := {q ∈ Q | Ω(q) is even} and
Q>c := {q ∈ Q | Ω(q) > c}. For any automaton A we write A′ to denote the
automaton that we obtain by adding copies of the final states of A, which are
marked with the test ϕt

st , inherit all incoming transitions of the original final
states, but have no outgoing transitions. The former construction has precedence
over the latter, so qA

′
q′ should be read as (qAq′)

′.
Recall that A accepts a word α if the largest color seen infinitely often at a

step during the unique run of A on w is even. This is equivalent to the condition
that there exists a state q with even color, such that after some finite prefix
which ends at a step in q, no state with larger color than Ω(q) is visited at a
step, and that every visit to q at a step is followed by another visit to q at a
step. The former condition is formalized as ϕ1(q) := 〈qIA

′
q〉(

∧
q′∈Q>Ω(q)

[qA
′
q′]ff),

the latter one as ϕ2(q) := [A′
q]〈qA

′
q〉tt. Acceptance of A is then captured by

ϕA :=
∨

q∈Qeven
ϕ1(q) ∧ ϕ2(q).

The construction of ϕ2(q) relies heavily on the determinism of the DPSA A.
If A were not deterministic, then the universal quantification over all runs ending
in q at a step would also capture partial runs that are eventually rejecting. Since
we only have a single run of A on the input word, however, this construction
yields a formula with the intended meaning. Furthermore, both ϕ1(q) and ϕ2(q)

10

use the observation that we are able to clear the stack every time that we reach
a step. Thus, even though the stack contents of qIA

′
q and A′

q are not carried
over to qA

′
q and qA

′
q′ , the concatenation of the automata does not change the

resulting run.
We have α ∈ L(A) if and only if (w, 0) |= ϕA and hence L(A) = L(ϕA).

Thus, the claim holds true. ⊓⊔

By combining Lemmas 2 and 3 we see that VLDL is at least as expressive
as VPA. The construction inherits an exponential blowup from the construction
of DPSAs from BVPAs. This proves the direction from automata to logic of
Theorem 1.

In the next section we show that each VLDL formula ϕ can be transformed
into an equivalent VPA. Thus, the construction from the proof of Lemma 3 yields
a normal form for VLDL formulas. Since the tests of the automata contained
in this formula only occur in final states, we can lift them from the automaton
to the formula, i.e., 〈A′〉ϕ and [A′]ϕ become 〈A〉(ϕt

st ∧ ϕ) and [A](ϕt
st → ϕ),

respectively. Moreover, we can reduce
∧

q′∈Q>Ω(q)
[qA

′
q′]ff to [qA

′
Q>Ω(q)

]ff, by

adapting the notation for replacing final states to sets of final states in the
obvious way.

Proposition 2. Let ϕ be a VLDL formula. There exists an equivalent formula

ϕ′ =

n∨

i=1

〈Ai
1〉(ϕst ∧ [Ai

2]ff) ∧ [Ai
3](ϕst → 〈Ai

4〉ϕst),

for some n ∈ N, where all Ai
j share the same underlying VPS, none of the Ai

j

contain tests, and ϕst is fixed over all ϕ.

5.2 From VLDL to 1-AJA

We now consider the construction of an equivalent BVPA Aϕ from a VLDL
formula ϕ. To this end, we first construct a one-way alternating jumping au-
tomaton (1-AJA) [4] Aaja from ϕ, which is known to be translatable into an
equivalent BVPA in exponential time. For the remainder of this section, we
define CommsQ := {→,→a} ×Q×Q.

A 1-AJA A = (Q, Σ̃,QI , δ, Ω) consists of

– a finite state set Q,
– a visibly pushdown alphabet Σ̃,
– a set QI ⊆ Q of initial states,
– a transition function δ : Q ×Σ → B+(CommsQ),
– and a coloring Ω : Q→ N,

where B+(CommsQ) denotes the set of positive boolean formulas over CommsQ.
Intuitively, when the automaton is in state q at position k of the word α =
α0α1α2 · · · it guesses a set of commands R ⊆ CommsQ that satisfies δ(q, αk). It
then spawns one copy of itself for each command in R and executes the command

11

with that copy. If the command is of the form (→, q, q′), then the corresponding
copy advances to position k + 1 and changes to state q. The state q′ is ignored.
If the command is of the form (→a, q, q

′) and αk is a matched call, the copy
jumps to the position of the matching return of αk and transitions to state q.
If αk is not a matched call, then the automaton advances to position k + 1 and
transitions to state q′. All spawned copies of A continue in parallel. A single
copy of A accepts α if the highest color visited infinitely often is even. A 1-AJA
accepts α if all of its copies accept α.

Formally, a run of A on an infinite word α = α0α1α2 · · · is a (Q×N)-labeled
tree without leaves. For a vertex v we write succs(v) to denote the successors of
v and for a set of vertices V we write labels(V) to denote the set of labels of V .
For each vertex v labeled with (q, k), there must exist a set R ⊆ CommsQ such
that R |= δ(q, αk) and labels(succs(v)) = {app(q, k, r) | r ∈ R}, where

– app(q, k, (→, q1, q2)) = (q1, k + 1),
– app(q, k, (→a, q1, q2)) = (q1, l) if αk is a matched call and αl is its matching

return,
– and app(q, k, (→a, q1, q2)) = (q2, k + 1) if αk is not a matched call.

A run is initial if its root is labeled with (qI , 0) for some qI ∈ QI . Each path π =
(q0, k0)(q1, k1)(q2, k2) · · · through the run induces a sequence of colors Ω(π) =
Ω(q0)Ω(q1)Ω(q2) · · · . A run is accepting if for all paths π through the run the
highest color occurring infinitely often in π is even. A 1-AJA A accepts a word
α if there exists an initial accepting run of A on α.

Lemma 4 ([4]). For every 1-AJA A there exists an effectively constructible

equivalent VPA Avp. The size of Avp is exponential in the number of states of

A.

For a given VLDL formula ϕ we now inductively construct a 1-AJA that
recognizes the same language as ϕ. The main difficulty lies in the translation of
formulas of the form 〈A〉ϕ, since these require us to translate VPAs over finite
words into 1-AJAs over infinite words. We do so by adapting the idea for the
translation from BVPAs to 1-AJAs from [4] and combining it with the bottom-
up translation from LDL into alternating automata in [9]. The main idea of
the former construction is to simulate the operations on the stack using copies
of the automaton. Whenever a call occurs, the 1-AJA jumps to the matching
return and guesses the state the TVPA will be in at that return. Additionally,
the automaton spawns a copy of itself that verifies this guess.

Lemma 5. For any VLDL formula ϕ there exists an effectively constructible

equivalent 1-AJA Aϕ. The number of states of Aϕ is quadratic in the size of ϕ.

Proof. We construct the automaton inductively over the structure of ϕ. The case
ϕ = p is trivial. For the boolean operations, the automata Aϕ are obtained by
the closure of 1-AJAs under these operations [4].

We now consider ϕ = 〈A〉ϕ′, where A = (QA, Σ̃, ΓA, ∆A, QA

I , F
A, tA). By

induction we obtain a 1-AJA A′ = (Q′, Σ̃, δ′, Q′
I , Ω

′) equivalent to ϕ′, and, for

12

each ϕi ∈ range(tA), an equivalent 1-AJA Ai = (Qi, Σ̃, δi, Qi
I , Ω

i). We need to
simulate a run of the TVPA A on a finite prefix of the input α and, if A accepts
this prefix, transition into A′.

Consider an initial run of A on such a prefix w, which starts with the empty
stack. This run visits steps at stack height 0 finitely often. At the last visit
to such a step, it either accepts the prefix it has read so far or it reads a call
and moves to a step at stack height 1. In the former case, the run of A has
terminated. In the latter case, it visits a finite number of steps at stack height 1,
and the same argument applies inductively. Note that the stack symbol pushed
at the final transition from stack height 0 to stack height 1 does not influence
the remainder of the run, as it is never popped nor inspected by A.

An example of a run on the word clcrrcclrll is shown in Figure 4, where c
is a call, r is a return, and l is a local action. The automaton visits the empty
stack exactly once after the initial configuration, namely after reading the second
r. Since the next symbol c is a call symbol, it has to push something onto the
stack, namely the symbol A, which is ignored in the remainder of the run. It
then visits configurations with stack height 1 exactly three more times before
accepting with stack height 1.

c l c r r c c l r l l

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

B B B

A A A A A A A A A A

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

q

γ

Fig. 4. Run of a VPA A on the word clcrrcclrll.

The idea is to have one main copy of the automaton that jumps along the
steps of the input word. Whenever this automaton encounters a call c ∈ Σc it
nondeterministically guesses whether or not the automaton eventually returns
to the current stack height. If it does, then the automaton guesses some states q′

and q′′ and a stack symbol A such that (q, c, q′, A) ∈ ∆, it jumps to the matching
return in state q′′ and spawns a copy that verifies that it is possible to go from
q′ to q′′ by popping A off the stack in the final transition in A. If the automaton
never returns to the empty stack again, then the main automaton simply guesses
some state q′ and some stack symbol A with (q, c, q′, A) ∈ ∆ and moves to state
q′. In this case it also remembers in its state space that it may not read any
returns anymore, since this would falsify the guess. This is repeated until the
main automaton visits an accepting state and nondeterministically decides to
transition into the 1-AJA A′.

The verification automata work similarly to the main automaton, with the
main difference that these automata do not need to guess whether or not the

13

automaton returns to the same stack height again upon reading a call. Since
their purpose is to verify that the automaton eventually pops a symbol off the
stack, they can simply assume that all pushed symbols are eventually popped as
well. If they encounter an unmatched call, they enter a rejecting sink.

The run of such a 1-AJA corresponding to the run of A shown in Figure 4 is
shown in Figure 5. The gray line indicates the stack height, the solid black path
represents the run of the main automaton, while the dashed black paths indicate
the runs of the verifying automata. Dotted lines indicate that an automaton
spawns a verifying automaton. For the sake of readability, the figure does not
include the copies of the automata that are spawned to verify that the tests of
A hold true. States of the form (q, 0) denote the main copy of the automaton
that has not yet ignored any push actions, while states of the form (q, 1) denote
copies that have ignored such actions. The states (q, q′, A) denote verification
copies that verify that it is possible to go from state q to state q′ by popping A
off the stack in the final transition.

c l c r r c c l r l l

0

1

2 X

X

X

(q0, 0)

(q1, q5, A)

(q2, q5, A)

(q3, q4, B)

(q4, q5, A)

(q5, 0)

(q6, 1)

(q7, q9, B) (q8, q9, B)

(q9, 1)

(q10, 1)

(q11, 1)

Fig. 5. Behavior of 1-AJA on the word clcrrcclrll.

Formally, we use the set of states

Q := (QA × {0, 1}) ∪ (QA ×QA × Γ) ∪ {rej} ∪Q′ ∪
⋃

ϕi∈range(t)

Qi,

where the state rej is a rejecting sink, while the state sets Q′ and Qi are the
state sets of the automata A′ and Ai, which are obtained by induction. The
states from QA × {0, 1} are used to simulate the original automaton at steps
with stack height 0 and stack height at least 1, respectively.

For the sake of readability, we define the transition function for the different
components of the automaton separately. We also write (→, q) and (→a, q) as
shorthands for (→, q, rej) and (→a, q, rej), i.e., for transitions in which the latter
state shall be disregarded. The easiest part of the transition function is that
which controls the rejecting sink rej , which is defined as δsink (rej , a) := (→, rej)
for all a ∈ Σ. We copy the transition functions δ′ and δi of A′ and Ai.

When encountering a final state of A, we need to be able to move to the
successors of the initial states of A′ in order to model acceptance of A on the

14

finite prefix read so far. To achieve a uniform presentation, we define the helper
formula χf (q, a) :=

∨
q′
I
∈Q′

I
δ′(q′I , a) if q ∈ FA and χf (q, a) := false otherwise.

Moreover, we need notation to denote transitions into the automata Ai im-
plementing the tests of A. More precisely, since we only transition into these
automata upon leaving the states labeled with the respective test, we need to
transition into the successors of one of the initial states of the implementing au-
tomata. To this end, we define the helper formula θaq :=

∨
qI∈Qi

I
δi(qI , a), where

t(q) = ϕi.

For local actions the main copy of the automaton can simply simulate the
behavior of A on the input word. Hence we have

δmain((q, b), l) :=
[
χf (q, l) ∨

∨

(q,l,q′)∈∆

(→, (q′, b))
]
∧ θlq for l ∈ Σl, b ∈ {0, 1}

When reading a call, the automaton nondeterministically guesses whether
it jumps to the matching return or whether it simulates the state transition
while ignoring the effects on the stack. In the former case, it guesses a transition
(q, c, q′, A) ∈ ∆ and a state q′′ ∈ Q, spawns a verification automata verifying
that it is possible to go from q′ to q′′ by popping A off the stack in the final
transition, and continues at the matching return in state q′′. In the latter case
it ignores the effects on the stack and denotes that it may not read any returns
from this point onwards by setting the binary flag in its state to 1.

δmain((q, b), c) :=
[
χf (q) ∨

∨

(q,c,q′,A)∈∆,q′′∈Q

[
(→, (q′, q′′, A)) ∧ (→a, (q

′′, b))
]
∨

∨

(q,c,q′,A)∈∆

(→, (q′, 1))
]
∧ θcq for c ∈ Σc, b ∈ {0, 1}

The main automaton may only handle returns as long as it has not skipped
any calls. If it encounters a return after having skipped a push action, it rejects
the input word, since the return falsifies its earlier guess of an unmatched call.

δmain((q, 0), r) :=
[
χf (q, r) ∨

∨

(q,r,⊥,q′)∈∆

(→, (q′, 0))
]
∧ θrq for r ∈ Σr

δmain((q, 1), r) := (→, rej) for r ∈ Σr

The transition function δmain defines the behavior of the main automaton. It
remains to define the behavior of the verifying automata. These behave similarly
to the main automaton on reading local actions and calls. The main difference in
handling calls is that these automata do not need to guess whether or not a call
is matched. Since they are only spawned on reading supposedly matched calls
and accept upon reading the matching return, all calls they encounter must be
matched as well. Additionally, they never transition to the automaton A′, but
merely to the automaton implementing the respective test upon having verified

15

their guess.

δver ((q, q
′, A), l) :=

[∨

(q,l,q′′)∈∆

(→, (q′′, q′, A))
]
∧ θlq if l ∈ Σl

δver ((q, q
′, A), c) :=

[∨

(q,c,q′′,A′)∈∆,q′′′∈Q

(→, (q′′, q′′′, A′)) ∧ (→a, (q
′′′, q′, A))

]
∧ θcq if c ∈ Σc

δver ((q, q
′, A), r) := θrq if r ∈ Σr, (q, r, A, q

′) ∈ ∆

δver ((q, q
′, A), r) := (→, rej) if r ∈ Σr, (q, r, A, q

′) 6∈ ∆

We then define the complete transition function δ of Aϕ as the union of the
previously defined partial transition functions. Since their domains are pairwise
disjoint, this union is well-defined.

δ := δsink ∪ δ′ ∪
⋃

ϕi∈range(t)

δi ∪ δmain ∪ δver

The coloring of Aϕ is obtained by copying the coloring of A′ and the A
i and

by coloring all states resulting from the translation of A with 1. Thus, we force
every path of the run of A to eventually leave A, since this automaton only
accepts a finite prefix of the input word. The 1-AJA

Aϕ := (Q, Σ̃, δ,QA

I × {0}, Ω ∪Ω′ ∪
⋃

ϕi∈range(tA)

Ωi)

then recognizes precisely the language of ϕ = 〈A〉ϕ′, where Ω : q 7→ 1 for all
q ∈ (QA × {0, 1})∪ (QA ×QA × Γ) ∪ {rej}.

If ϕ = [A]ϕ′ we use the identity ¬〈A〉¬ϕ′ ≡ [A]ϕ′ and construct the 1-AJA
equivalent to ¬〈A〉¬ϕ′ instead. ⊓⊔

By combining Lemmas 4 and 5 we see that BVPAs are at least as expressive
as VLDL formulas. This proves the direction from logic to automata of Theorem
1.

The construction via 1-AJAs yields automata of exponential size in the num-
ber of states. This blowup is unavoidable.

Lemma 6. There exists a pushdown alphabet Σ̃ such that for all n ∈ N there

exists a language Ln that

– is defined by a VLDL formula over Σ̃ of polynomial size in n, and
– every BVPA over Σ̃ recognizing Ln has at least exponentially many states

in n.

Proof. We use the pushdown alphabet Σ̃ = (Σc, Σr, Σl) = (∅, ∅, {0, 1,#}). For
any n ∈ N and any i ∈ [0; 2n−1] we write 〈i〉n to denote the binary encoding of i
using exactly n bits. We define the singleton language Ln := {#〈0〉n# · · ·#〈2n−
1〉n#ω}. It is known that there exists an LTL formula of polynomial length in

16

n that defines Ln. Thus there also exists a VLDL formula of polynomial length
defining this language due to Proposition 1.

Furthermore, since all symbols are local actions, any BVPA recognizing Ln

cannot use its stack and thus has to work like a traditional finite automaton
with Büchi acceptance. Again, it is known that all Büchi automata recognizing
Ln have at least exponentially many states in n. Hence, all BVPAs recognizing
Ln have at least exponentially many states in n. ⊓⊔

6 Satisfiability and Validity are ExpTime-complete

We say that a VLDL formula ϕ is satisfiable if it has a model. Dually, we say that
ϕ is valid if all words are models of ϕ. Instances of the satisfiability- and validity
problem consist of a VLDL formula ϕ. The satisfiability problem asks whether
or not ϕ is satisfiable, whereas the validity problem asks whether or not ϕ is
valid. Both problems are decidable in exponential time using the construction
of BVPAs from VLDL formulas from Theorem 1. We show both problems to be
ExpTime-hard.

Theorem 2. Both the satisfiability problem and the validity problem for VLDL

are ExpTime-complete.

Proof. Due to duality, we only show ExpTime-completeness of the satisfiability
problem. Membership in ExpTime follows from closure of VLDL under nega-
tion, the membership of the emptiness-problem for 1-AJA in ExpTime [4] and
Lemma 5.

We show ExpTime-hardness of the problem by a reduction from the word
problem for polynomially space-bounded alternating Turing machines. Our proof
is based on the reduction of the same problem to the problem of model checking
pushdown systems against LTL specifications from the full version of [3]. In that
reduction, an accepting run of an alternating Turing machine is encoded as a pair
of a pushdown system, which checks the general format of the encoding using
its stack, and an LTL specification, which checks additional properties without
using a stack. We adapt this proof by checking the properties asserted by the
pushdown system with a visibly pushdown automaton. Moreover, we encode the
specification of the general format in the formula itself instead of splitting the
specification into a pushdown system and an LTL specification.

An alternating Turing machine (ATM) [7] T = (Q∃, Q∀, Γ, B, qI , δ, F) con-
sists of

– two finite disjoint sets Q∃ and Q∀ of states, which are called existential and
universal states, respectively, for which we write Q := Q∃ ∪Q∀,

– a tape alphabet Γ ,
– a blank symbol B ∈ Γ ,
– an initial state qI ∈ Q \ F ,
– a transition relation ∆ ⊆ Q× Γ ×Q× Γ × {L,R},
– and a set of final states F ⊆ Q.

17

We assume w.l.o.g. that every configuration has exactly two applicable transi-
tions and that the initial state is not final.

Let p(n) be some polynomial. A configuration c of a p(n)-bounded ATM T
on an input word w is a word of length p(|w|) + 1 over the alphabet Γ ∪Q that
contains exactly one symbol from Q. Let Conf := Γ ∗QΓ ∗∩(Q∪Γ)p(|w|)+1 denote
the set of such configurations. If c ∈ Conf contains a symbol from Q∃ (Q∀), we
call c existential (universal). Furthermore, a transition (q, a, q′, a′, D) ∈ ∆ with
D ∈ {L,R} is existential (universal), if q ∈ Q∃ (q ∈ Q∀).

A run of a p(n)-bounded ATM T on w is a tree that is labeled with config-
urations of T on w. Each non-terminal vertex has either one or two successors,
depending on whether it is labeled with an existential or a universal configu-
ration. These successors are labeled by one or two successor configurations. A
run is accepting if all terminal vertices are labeled with final configurations. An
ATM T accepts a word w if there exists an accepting run of T on w.

An instance of the word problem consists of a p(n)-bounded ATM T and a
word w and asks whether or not T accepts w. This problem is ExpTime-hard [7].

We encode runs of T by linearizing them as words using tags of the form <i
τ

and >i
τ for i ∈ {1, 2} to delimit the encoding the first and second subtree of a

vertex (recall that we assume that every configuration has at most two succes-
sors). Here, τ denotes the transition that is applied to obtain the configuration
of the root of this subtree. Moreover, we use the tags <ℓ and >ℓ to denote leaves.

Formally, we define the pushdown alphabet Σ̃ = (Σc, Σr, Σl) with

– Σc = ((Q ∪ Γ)× {↓}) ∪ {<1
τ | τ ∈ ∆} ∪ {<ℓ},

– Σr = ((Q ∪ Γ)× {↑}) ∪ {>1
τ | τ existential} ∪ {>2

τ | τ universal} ∪ {>ℓ}, and
– Σl = {>1

τ , <
2
τ | τ universal} ∪ {#}.

Let Tags = {<1
τ , >

1
τ | τ existential} ∪ {<1

τ , >
1
τ , <

2
τ , >

2
τ | τ universal} ∪ {<ℓ, >ℓ}.

For every w = w0 · · ·wn ∈ Γ ∗ and d ∈ {↓, ↑}, let (w, d) := (w0, d) · · · (wn, d),
which we lift to languages in the obvious way. Furthermore, wr := wn · · ·w0. Let
c ∈ Conf . We define push(c) := (c, ↓) and pop(c) := (cr, ↑)

Using this, we encode a run of T by recursively iterating over its vertices v
as follows:

– enc(v) := <ℓ ·push(c)· >ℓ ·pop(c), if v is a leaf labeled with the configura-
tion c.

– enc(v) := <1
τ ·push(c) · enc(v1)· >1

τ ·pop(c), if v has a single child v1, v is
labeled by the (existential) configuration c, and τ is the transition that is
applied to c to obtain the label of v1.

– enc(v) := <1
τ1

·push(c) · enc(v1)· >1
τ1

·pop(c) <2
τ2

·push(c) · enc(v2)· >2
τ2

·pop(c), if v has two children v1 and v2, v is labeled by the (universal)
configuration c, and τi, for i ∈ {1, 2}, is the transition that is applied to c to
obtain the label of vi.

Thus, a complete run with root v is encoded by enc(v) · #ω. Our goal is to
construct a formula ϕT ,w that is satisfied only by words that encode initial
accepting runs of T on w. To this end, we need to formalize the following six
conditions on an infinite word α ∈ Σω:

18

1. α ∈ (Tags · Conf)+ ·#ω and begins with <1
τ · (cI , ↓), where cI is the initial

configuration of T on w and where τ is a transition that is applicable to cI .
2. Every <i

τ , i ∈ {1, 2}, is directly followed by (c, ↓) for some configuration c to
which τ is applicable. Furthermore, say the stack height is n after this infix.
Then, we require that this stack height is reached again at a later position,
and at the first such position, the infix >1

τ ·(cr, ↑) starts.
3. Every >1

τ with universal τ , which is directly followed by (cr, ↑) for some
configuration c (assuming the previous condition is satisfied), is directly fol-
lowed by (cr, ↑)· <2

τ ′ ·(c, ↓), where τ ′ 6= τ is the unique other transition that
is applicable to c.

4. Every <i
τ , i ∈ {1, 2}, is directly followed by (c, ↓) < (c′, ↓) for some <∈ {<1

τ |
τ ∈ ∆} ∪ {<ℓ} such that τ is applicable to c and c′ is the corresponding
successor configuration.

5. Every <ℓ is directly followed by (c, ↓) >ℓ (c
r, ↑) for some accepting configu-

ration of T .
6. Stack height zero has to be reached after a non-empty prefix, and from the

first such position onwards, only # appears.

It is straightforward to come up with polynomially-sized VLDL formulas
expressing these conditions (note that only the second and sixth condition require
non-trivial usage of the stack). Furthermore, α satisfies the conjunction of these
properties if, and only if, it encodes an accepting run of T on w. Thus, as
the word problem for polynomially space-bounded ATMs is ExpTime-hard, the
satisfiability problem for VLDL is ExpTime-hard as well. ⊓⊔

7 Model Checking is ExpTime-complete

We now consider the model checking problem for VLDL. Given a VPS S and
an initial state qI of S, we define traces(S) as the set of all infinite words α for
which there exists a run of S on α that starts in qI . An instance of the model
checking problem consists of a VPS S, an initial state qI of S, and a VLDL
formula ϕ and asks whether traces(S) ⊆ L(ϕ) holds true. We call S the system
and ϕ the specification.

This problem is decidable in exponential time using the quadratic-size con-
struction of 1-AJA from the proof of Lemma 5 and an exponential-time model
checking algorithm for 1-AJA [4]. Moreover, the problem is ExpTime-hard.

Theorem 3. Model checking VLDL specifications against VPS is ExpTime-

complete.

Proof. Membership in ExpTime follows from Lemma 5 and the membership of
the problem of checking visibly pushdown systems against 1-AJA specifications
in ExpTime [4]. Moreover, since the validity problem for VLDL is ExpTime-
hard and since validity of ϕ is equivalent to traces(Suniv) ⊆ ϕ, where Suniv

with traces(Suniv) = Σω is effectively constructible in constant time, the model
checking problem for VLDL is ExpTime-hard as well. ⊓⊔

19

8 Solving VLDL Games is 3ExpTime-complete

In this section we investigate visibly pushdown games with winning conditions
given by VLDL formulas. We consider games with two players, which we call the
input- and the output player, or PI and PO, respectively. We assume that the
set P of atomic propositions is partitioned into disjoint subsets I and O, which
we call the input- and output propositions. This partition of P is independent
of the partition of 2P into a pushdown alphabet Σ̃.

A two-player game with VLDL winning condition G = (VI , VO, Σ,E, vI , ℓ, ϕ)
consists of

– two disjoint, possibly countably infinite sets VI and VO of vertices,
– a finite alphabet Σ,
– an initial state vI ∈ VI ∪ VO,
– a set of edges E ⊆ (VI ∪ VO)2,
– a state-labeling ℓ : (VI ∪ VO) → Σ,
– and a VLDL formula ϕ, which we call the winning condition.

A play π = v0v1v2 · · · of G is a infinite sequence of vertices of G with (vi, vi+1) ∈
E for all i ≥ 0. We call π initial if v0 = vI . The play π is winning for PO if the
infinite word ℓ(v1)ℓ(v2)ℓ(v3) · · · 2 is a model of ϕ. Otherwise π is winning for PI .

A strategy for PX is a function σ : V ∗VX → VI∪VO, such that (v, σ(w·v) ∈ E
for all v ∈ VX , w ∈ V ∗. We call a play π = v0v1v2 · · · consistent with σ if for
all finite prefixes π′ = v0 · · · vn of π with vn ∈ VX we have σ(π′) = vn+1. A
strategy σ is winning for PX if all initial plays that are consistent with σ are
winning for PX . We say that the input- or the output player wins G if he or she
has a winning strategy. If either PI or PO wins a given game G, we say that G
is determined.

A visibly pushdown game (VPG) with a VLDL winning condition H =
(S, QI , QO, qI , ϕ) consists of

– a VPS S = (Q, Σ̃, Γ,∆),
– a partition of Q into QI and QO,
– an initial state qI ∈ Q,
– and a VLDL formula ϕ.

The VPG H then defines the two-player game GH = (VI , VO, Σ,E, vI , ℓ, ϕ) with

– VX := QX × ((Γ \ {⊥})∗ · ⊥)×Σ,
– vI = (qI ,⊥, a) for some a ∈ Σ (recall that the trace that determines the

winner of a play disregards the label of the initial vertex),
– ((q, γ, a), (q′, γ′, a′)) ∈ E if and only there is an a′-labeled edge from (q, γ)

to (q, γ′) in the configuration graph GS ,
– and ℓ : (q, γ, a) 7→ a.

Solving a VPG H means deciding whether or not PO wins GH.

2 Note that the trace starts with v1.

20

Proposition 3. VPGs with VLDL winning conditions are determined.

Proof. Since each VLDL formula defines a language in ω-VPL, each VPG with
a VLDL winning condition is equivalent to a VPG with an ω-VPL winning
condition, which are known to be determined [12]. ⊓⊔

It is possible to solve VPGs with VLDL winning conditions by constructing
a VPA Aϕ from the winning condition ϕ and then solving the visibly pushdown
game with a VPA winning condition using the method from [12]. This approach
runs in triply-exponential time in |ϕ| and exponential time in |S|. Moreover, the
problem is 3ExpTime-hard.

Theorem 4. Solving VPGs with VLDL winning conditions is 3ExpTime-com-

plete.

Proof. Membership in 3ExpTime follows from the membership of solving VPGs
against VPA winning conditions in 2ExpTime [12] and Lemma 5.

We show 3ExpTime-hardness of the problem with a reduction from solving
pushdown games with LTL winning conditions. A pushdown game with an LTL
winning condition H = (S, VI , VO, ψ) is defined similarly to a VPG, except for
the relaxation that S may now be a traditional pushdown system instead of a
visibly pushdown system. Specifically, we have∆ ⊆ (Q×Γ×Σ×Q×Γ≤2), where
Γ≤2 denotes the set of all words over Γ of at most two letters. Stack symbols are
popped off the stack using transitions of the form (q, A, a, q′, ε), the top of the
stack can be tested and changed with transitions of the form (q, A, a, q′, B), and
pushes are realized with transitions of the form (q, A, a, q′, BC). Additionally,
the winning condition is given as an LTL formula instead of a VLDL formula.
The two-player game GH is defined analogously to the visibly pushdown game.

Since the pushdown game admits transitions such as (q, A, a, q′, BC), which
pop A off the stack and push B and C onto it, we need to split such transitions
into several transitions in the visibly pushdown game. We modify the original
game such that every transition of the original game is modeled by three transi-
tions in the visibly pushdown game, up to two of which may be dummy actions
that do not change the stack. As each transition may perform at most three
operations on the stack, we can keep track of the list of changes still to be per-
formed in the state space. We perform these actions using dummy letters c and
l, which we add to Σ and read while performing the required actions on the
stack. We choose the vertices V ′

X = VX ∪ (VX × (Γ ∪ {#})≤2) and the alphabet

Σ̃ = ({c}, Σ, {l}).
We transform H as shown in Figure 6 and obtain the VPG H′. Moreover,

we transform ψ into ψ′ by inductively replacing each occurrence of Xψ by X3ψ′

and each occurrence of ψ1Uψ2 by (ψ′
1 ∨ c ∨ l)U(ψ′

2 ∧ ¬c ∧ ¬l). We subsequently
translate the obtained LTL formula ψ′ into an equivalent VLDL formula ϕ using
Proposition 1. The input player wins H′ with the winning condition ϕ if and
only he wins H with the winning condition ψ. Hence, solving VPGs with VLDL
winning conditions is 3ExpTime-hard. ⊓⊔

21

(i)
q q′,## q′,# q′

a, ↑A l,→ l,→

(ii)
q q′, B# q′,# q′

a, ↑A c, ↓B l,→

(iii)
q q′, BC q′, B q′

a, ↑A c, ↓C c, ↓B

Fig. 6. Construction of a VPG from a pushdown game for transitions of the forms (i)
(q, a,A, q′, ε), (ii) (q, a,A, q′, B), and (iii) (q, a,A, q′, BC).

9 Pushdown Linear Dynamic Logic

In this work we extend LDL by replacing the regular expressions used as guards
for the temporal operators by VPAs. The next step would be to replace the VPA
by a more powerful automaton model, for example deterministic pushdown au-
tomata (DPDA). However, all interesting decision problems for the resulting
logic called Deterministic Pushdown Linear Dynamic Logic (DPLDL) are unde-
cidable.

Theorem 5. The satisfiability problem for DPLDL is undecidable.

Proof. We show the undecidability using a reduction from the problem of de-
ciding nonemptiness of the intersection of two DPDA, which is known to be
undecidable [10]. Let A1 and A2 be two DPDA over a shared alphabet Σ, pick
/∈ Σ and consider ϕ := 〈A1〉# ∧ 〈A2〉#. Then ϕ is satisfiable if and only if
L(A1) ∩ L(A2) 6= ∅, whence satisfiability of DPLDL is undecidable. ⊓⊔

Since the satisfiability problem reduces to the model checking and the prob-
lem of solving pushdown games against DPLDL winning conditions, these prob-
lems are undecidable as well.

Corollary 1. The validity problem and the model checking problem for DPLDL

as well as the problem of solving pushdown games against DPLDL winning con-

ditions are undecidable.

Since every DPDA is also a PDA, the extension of DPLDL by nondeterminis-
tic pushdown automata inherits these undecidability results from DPLDL. Thus,
VLDL is, to the best of our knowledge, the most expressive logic that combines
the temporal modalities of LDL with guards specified by classical automata
models and still has decidable decision problems.

22

10 Conclusion

We have introduced Visibly Linear Dynamic Logic (VLDL) which strengthens
Linear Dynamic Logic (LDL) by replacing the regular expressions used as guards
in the latter logic with visibly pushdown automata. VLDL is as expressive as the
visibly pushdown languages. We have provided effective translations from VLDL
into BVPA and vice versa with an exponential blowup in size in both directions.
From automata to logic, this blowup cannot be avoided. It remains open whether
or not the exponential blowup in the other direction can be avoided.

Figure 7 gives an overview over the known formalisms that capture ω-VPL
and the translations between them. The constructions described in this work are
marked by solid lines, all others by dotted lines.

CaRetVLTLBVPA

DPSA VLDL1-AJA

2-AJA
O(n) [5]

O(2n) [5]

O(2n) [5]

O
(2

n
)
[1
2
]

O(n2)

O(n2)

O
(1
)
[4
]

O(2n) [4]

O(n 2

) [4]

Fig. 7. Formalisms capturing (subsets of) ω-VPL and translations between them.

We have shown that the satisfiability problem and the emptiness problem
for VLDL are ExpTime-complete. Model checking visibly pushdown systems
against VLDL specifications is ExpTime-complete as well. Moreover, we proved
that solving visibly pushdown games with VLDL winning conditions is 3Exp-

Time-complete.
Additionally, we have shown that removing the restriction that the guards are

visibly pushdown automata and replacing them even with deterministic push-
down automata yields a logic with an undecidable satisfiability problem. It re-
mains an open question whether there exist formalisms with expressive power
inbetween visibly pushdown automata and deterministic pushdown automata
that yield similar logics with decidable decision problems.

In contrast to LDL [15] and VLTL [5], we have used automata to define
guards instead of regular or rational expressions. Even though the visibly ra-
tional expressions (VRE) [6] used in VLTL can be translated into VPAs of
quadratic size, it is not clear how to translate the past-operators of VLTL into

23

VLDL directly. There exist translations between VLTL and VLDL that incur
a doubly-exponential blowup in both directions, using a detour over BVPAs,
as shown in Figure 7. In spite of this blowup in the translation from automata
to regular expressions, the satisfiability problem and the model checking prob-
lem for both logics are ExpTime-complete. It remains open whether there exist
efficient translations between the two logics.

Acknowledgements The authors would like to thank Laura Bozzelli for pro-
viding the full version of [4] and Christof Löding for pointing out the 3ExpTime-
hardness of realizability for visibly pushdown games against LTL specifications.

References

1. Alur, R., Madhusudan, P.: Visibly Pushdown Languages. In: STOC 2004. pp. 202–
211. ACM (2004)

2. Alur, R., Ettesami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer (2004)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer (1997), full version available
at http://www.liafa.univ-paris-diderot.fr/~abou/BEM97.pdf

4. Bozzelli, L.: Alternating Automata and a Temporal Fixpoint Calculus for Visibly
Pushdown Languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007.
LNCS, vol. 4703, pp. 476–491. Springer (2007)

5. Bozzelli, L., Sánchez, C.: Visibly linear temporal logic. In: IJCAR 2014. LNCS,
vol. 8562, pp. 418–483 (2014)

6. Bozzelli, L., Sánchez, C.: Visibly rational expressions. Act. Inf. 51(1), 25–49 (2014)
7. Chandra, A., Stockmeyer, L.: Alternation. In: FOCS 1976. pp. 98–108. IEEE (1976)
8. Chen, H., Wagner, D.: MOPS: an Infrastructure for Examining Security Properties

of Software. In: Atluri, V. (ed.) CCS 2002. pp. 235–244. ACM (2002)
9. Faymonville, P., Zimmermann, M.: Parametric Linear Dynamic Logic (2015), to

appear in Inf. and Comp., available at http://arxiv.org/abs/1408.5957
10. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley (2001)
11. Leucker, M., Sanchéz, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z.,

Woodcock, J. (eds.) ICTAC 2007. pp. 291 – 305. No. 4711 in LNCS (2007)
12. Löding, C., Madhusudan, P., Serre, P.: Visibly Pushdown Games. In: Lodaya, L.,

Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer (2005)
13. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-

grams. J. of Log. and Alg. Prog. 73(1–2), 51–69 (2007)
14. Pnueli, A.: The temporal logic of programs. In: FOCS 1977. pp. 46–57. IEEE (1977)
15. Vardi, M.: The Rise and Fall of LTL. In: D’Agostino, G., Torre, S.L. (eds.) EPTCS

54 (2011)
16. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. and Comp.

115, 1–37 (1994)
17. Wolper, P.: Temporal logic can be more expressive. Inf. and Cont. 56, 72–99 (1983)

24

http://www.liafa.univ-paris-diderot.fr/~abou/BEM97.pdf
http://arxiv.org/abs/1408.5957

	Visibly Linear Dynamic Logic

