
Quantitative Reductions and
Vertex-Ranked Infinite Games?

Alexander Weinert

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
weinert@react.uni-saarland.de

Abstract. We introduce quantitative reductions, a novel technique for
solving quantitative games that does not rely on a reduction to qual-
itative games. We demonstrate that such reductions exhibit the same
desirable properties as qualitative ones. In addition, they retain the op-
timality of solutions. As a general-purpose target for quantitative reduc-
tions, we introduce vertex-ranked games, in which the value of a play is
determined only by a qualitative winning condition and a ranking of the
vertices. Moreover, we demonstrate how to solve such games optimally.
Finally, we provide quantitative reductions to vertex-ranked games for
both quantitative request-response and Muller games. Thereby, we ob-
tain ExpTime-completeness of solving the former games, while obtaining
a new proof for the membership of solving the latter games in ExpTime.

1 Introduction

The study of quantitative infinite games has garnered great interest lately. This
is due to them allowing for a much more fine-grained analysis and specification
of reactive systems than classical qualitative games. While there exists previous
work investigating such games, the approaches to these games usually rely on
ad-hoc solutions that are tailor-made to the problem under consideration. In
particular, no general tools have been developed for the analysis of such games.
We introduce a framework that disentangles the study of quantitative games
from that of qualitative ones.

Qualitative infinite games have been applied successfully in the verifica-
tion and synthesis of reactive systems. They have given rise to a multitude
of algorithms that ascertain system correctness and that synthesize correct-by-
construction systems. In such a game, two players, called Player 0 and Player 1,
move a token in a directed graph. After infinitely many moves, the resulting se-
quence of nodes is evaluated and one player is declared as the winner of the play.
For example, in a qualitative request-response game, the goal for Player 0 is to
ensure that every visit to a vertex denoting some request is eventually followed
by a visit to a vertex denoting an answer to that request. To solve qualitative
games, i.e., to determine a winning strategy for one player, one often reduces a

? Supported by the project “TriCS” (ZI 1516/1-1) of the German Research Foundation
(DFG).

complex game to a potentially larger, but conceptually simpler one. For example,
in a multi-dimensional request-response game, i.e., a request-response game in
which there exist multiple conditions that can be requested and answered, one
stores the set of open requests and demands that every request is closed at in-
finitely many positions. As this is a Büchi condition, which is much simpler than
the request-response condition, one is able to reduce request-response games to
Büchi games.

In recent years the focus of research has shifted from the study of qualitative
games, in which one player is declared as the winner, to that of quantitative
games, in which the resulting play is assigned some value. Such games allow to
model systems in which, for example, requests have to be answered within a
certain number of steps [12,9,5,11,2], systems with one or more finite resources
which may be drained and charged [3,17,4,1], or scenarios in which each move
incurs a certain cost for either player [8,20].

In general, one player aims to minimize the value of the resulting play, while
the other one seeks to maximize it. In a quantitative request-response game,
for example, it is the goal of Player 0 to minimize the number of steps between
requests and their corresponding answers. The typical questions asked in the con-
text of such games are “Can Player 0 ensure an upper bound on the time between
requests and responses?” [12,5,11], “What is the minimal time between requests
and responses that Player 0 can ensure?” [19], “What is the minimal average
level of the resource that Player 0 can ensure without it ever running out?” [1],
or “Can Player 0 ensure an average cost per step greater than zero?” [20].

Such decision problems are usually answered by reducing the quantitative
game to a qualitative one, where some bound is hardcoded during the reduction.
If the value of the resulting play is below the bound, then Player 0 is declared
as the winner. For example, in order to determine the winner in a quantitative
request-response game as described above for a given bound b, we construct a
Büchi game in which every time a request is opened, a counter is started which
counts up to the bound b and is reset if the request is answered. Once a counter
exceeds the value b, we move to a position indicating that Player 0 has lost. We
then require that every counter is not running infinitely often, which is again a
Büchi condition, i.e., it is much simpler than the original quantitative request-
response condition. The resulting game is won by Player 0 if and only if she can
ensure that every request is answered within at most b steps.

Such reductions are usually very specific to the problem being addressed.
Furthermore, they abandon the quantitative aspect of the game under consid-
eration immediately, as the bound is hardcoded during the reduction. Thus,
even when only changing the bound one is interested in, the reduction has to
be recomputed and the resulting game has to be solved from scratch. In our
request-response example, if one is interested in checking whether Player 0 can
ensure every request to be answered within at most b′ 6= b steps, one would
construct a new Büchi game. This game would then be solved independently of
the previously computed one for the bound b.

In this work, we lift the concept of reductions for qualitative games to quan-
titative games. Such quantitative reductions enable the study of a multitude of
optimization problems for quantitative games in a similar way to decision prob-
lems for qualitative games. When investigating quantitative request-response
games using quantitative reductions, for example, we only compute a single,
simpler quantitative game. We can then easily check this game for a winning
strategy for Player 0 for any bound b. If she has such a strategy in the latter
game, the quantitative reduction yields a strategy satisfying the same bound in
the former one.

In general, we retain the intuitive property of reductions for qualitative
games: The properties of a complex quantitative game can be studied by in-
vestigating a potentially larger, but conceptually simpler quantitative game.

Our Contributions We present the first framework for reductions between quan-
titative games and we provide vertex-ranked games general-purpose targets for
such reductions. Additionally, we show tight bounds on the complexity of solving
such games with respect to a given bound. Finally, we illustrate the usefulness
of this framework by using quantitative reductions to provide tight bounds on
the complexity of solving quantitative request-response games with respect to
some given bound and to provide an upper bound on the complexity of solving
quantitative Muller games with respect to some given bound.

After introducing both qualitative and quantitative games formally in Sec-
tion 2, we define quantitative reductions in Section 3. In Theorem 2 we show that
they provide a mechanism to solve a quantitative game with respect to a given
bound. More precisely, we show that if a game G can be reduced to a game G′,
then we can use a strategy for Player 0 that minimizes the value of plays in G′
to construct a strategy for her in G which minimizes the value of plays in that
game as well.

In Section 4, we define very general classes of quantitative games, so-called
vertex-ranked games, that can be used as targets for quantitative reductions.
Such games are very simple quantitative games, in which the cost of a play is
given only by a qualitative winning condition and a ranking of the vertices of
the game by natural numbers. If the resulting play is winning according to the
qualitative condition, then its value is given by the highest rank visited at all
or visited infinitely often, depending on the specific variant of vertex-ranked
games. Otherwise, the value of the play is infinite. We provide asymptotically
tight bounds on the complexity of solving vertex-ranked games in Theorem 4
and Theorem 5.

Finally, we demonstrate the usefulness of quantitative reductions and vertex-
ranked games by using them to solve quantitative request-response games with
respect to a given bound in Section 5.1 and to solve quantitative Muller games
with respect to a given bound in 5.2. No bound on the complexity of solving
quantitative request-response games was known so far. We show the problem
to be ExpTime-complete. Moreover, both results demonstrate that our frame-
work is amenable to modular and conceptually simpler proofs when compared
to previously existing ad-hoc solutions.

2 Preliminaries

We begin by defining notions that are common to both qualitative and quanti-
tative games. Afterwards, we recapitulate the standard notions for qualitative
games before defining quantitative games and lifting the notions for qualitative
games to the quantitative case.

We denote the non-negative integers by N and define [n] = {0, 1, . . . , n− 1}
for every n ≥ 1. Also, we define ∞ > n for all n ∈ N and N∞ = N ∪ {∞}.
An arena A = (V, V0, V1, E, vI) consists of a finite, directed graph (V,E), a
partition (V0, V1) of V into the positions of Player 0 and Player 1, and an initial
vertex vI ∈ V . The size of A, denoted by |A|, is defined as |V |. A play in A is
an infinite path ρ = v0v1v2 · · · through (V,E) starting in vI . To rule out finite
plays, we require every vertex to be non-terminal.

A strategy for Player i is a mapping σ : V ∗Vi → V where (v, σ(πv)) ∈ E for
all π ∈ V ∗, v ∈ Vi. We say that σ is positional if σ(πv) = σ(v) for every π ∈ V ∗,
v ∈ Vi. We often view positional strategies as a mapping σ : Vi → V . A play
v0v1v2 · · · is consistent with a strategy σ for Player i, if vj+1 = σ(v0 · · · vj) for
all j with vj ∈ Vi.

A memory structure M = (M,mI ,Upd) for an arena (V, V0, V1, E, vI) con-
sists of a finite set M of memory states, an initial memory state mI ∈ M ,
and an update function Upd: M × V → M . The update function is extended
to finite play prefixes in the usual way: Upd+(vI) = mI and Upd+(πv) =
Upd(Upd+(π), v) for play prefixes π ∈ V + and v ∈ V . A next-move func-
tion Nxt: Vi × M → V for Player i has to satisfy (v,Nxt(v,m)) ∈ E for all
v ∈ Vi, m ∈ M . It induces a strategy σ for Player i with memory M via
σ(v0 · · · vj) = Nxt(vj ,Upd+(v0 · · · vj)). A strategy is called finite-state if it can
be implemented by a memory structure. We define |M| = |M |. The size |σ| of a
finite-state strategy is the size of a smallest memory structure implementing it.

An arena A = (V, V0, V1, E, vI) and a memory structure M = (M,mI ,Upd)
for A induce the expanded arena A×M = (V ×M,V0×M,V1×M,E′, (vI ,mI))
where E′ is defined via ((v,m), (v′,m′)) ∈ E′ if and only if (v, v′) ∈ E and
Upd(m, (v, v′)) = m′. Every play ρ = v0v1v2 · · · in A has a unique extended
play extM(ρ) = (v0,m0)(v1,m1)(v2,m2) · · · in A×M defined by m0 = mI and
mj+1 = Upd(mj , vj+1), i.e., mj = Upd+(v0 · · · vj). We omit the indexM if it is
clear from the context. The extended play of a finite play prefix in A is defined
analogously.

Let A be an arena, let M1 = (M1,m
1
I ,Upd1) be a memory structure for A,

and let M2 = (M2,m
2
I ,Upd2) be a memory structure for A × M1. We de-

fineM1×M2 = (M1×M2, (m
1
I ,m

2
I),Upd), where Upd((m1,m2), v) = (m′1,m

′
2)

if Upd1(m1, v) = m′1 and Upd2(m2, (v,m
′
1)) = m′2. Via a straightforward in-

duction and in a slight abuse of notation we obtain Upd+
M2

(Upd+
M1

(π)) =

Upd+
M1×M2

(π) for all finite and infinite plays π, where we identify (v,m1,m2) =
((v,m1),m2) = (v, (m1,m2)).

2.1 Qualitative Games

A qualitative game G = (A,Win) consists of an arena A with vertex set V
and a set Win ⊆ (V ′)ω of winning plays for Player 0, with V ′ ⊇ V .1 The set
of winning plays for Player 1 is V ω \Win. As our definition of games is very
general, the infinite object Win may not be finitely describable. If it is, however,
we define |G| = |A|+ |Win|, with |Win| as the description size of Win.

A strategy σ for Player i is a winning strategy for G = (A,Win) if all plays
consistent with σ are winning for that player. If Player i has a winning strategy,
then we say she wins G. Solving a game amounts to determining its winner, if
one exists. A game is determined if one player has a winning strategy.

2.2 Quantitative Games

We define quantitative games as an extension of classical qualitative games. In
a quantitative game, plays are not partitioned into winning and losing plays,
but rather they are assigned some measure of quality. We keep this definition
very general in order to encompass many of the already existing models. In
Section 4, we define concrete examples of such games and show how to solve
them optimally.

A quantitative game G = (A,Cst) consists of an arena A with vertex set V
and a cost-function Cst : (V ′)ω → N∞ for plays, where V ′ ⊇ V . Similarly to Win
in the qualitative case, Cst is an infinite object. If it is finitely describable, we
define the size |G| of G as the sum of |A| and the description length of Cst. A
play in A is winning for Player 0 in G if Cst(ρ) < ∞. Winning strategies, the
winner of a game, and solving a game are defined as in the qualitative case.

We extend the cost-function over plays to strategies by defining Cst(σ) =
supρ Cst(ρ) and Cst(τ) = infρ Cst(ρ) for strategies σ and τ of Player 0 and
Player 1, respectively. The supremum and infimum range over all plays ρ consis-
tent with σ and τ , respectively. Moreover, we say that a strategy σ for Player i
is optimal if its cost is minimal (for Player 0) or maximal (for Player 1) among
all strategies for that player.

For any strategy σ for Player 0, Cst(σ) < ∞ implies that σ is winning for
Player 0. However, the converse does not hold true: Each play consistent with
some strategy σ may have finite cost, while for every n ∈ N there exists a play ρ
consistent with σ with Cst(ρ) = n. Dually, while each winning strategy τ for
Player 1 has Cst(τ) =∞, the converse does not hold true.

Player 0 wins G with respect to b if she has a strategy σ with Cst(σ) ≤ b.
Dually, if Player 1 has a strategy τ with Cst(τ) > b, then he wins G with respect
to b. Solving a quantitative game G with respect to b amounts to deciding whether
or not Player 0 wins G with respect to b.

Note that, if Player 0 has a strategy σ with Cst(σ) ≤ b, then for all strate-
gies τ for Player 1 we have Cst(τ) ≤ b. Dually, if Player 1 has a strategy τ

1 We define the winning condition over a superset of V in order to simplify the removal
of parts of the arena later on.

with Cst(τ) ≥ b, then for all strategies σ for Player 0 we have Cst(σ) ≥ b. A
quantitative game is determined if for each b ∈ N, one player has a strategy with
cost at most b (for Player 0), or at least b (for Player 1).

We say that b ∈ N is a cap of a quantitative game G if Player 0 winning G
implies that she has a strategy with cost at most b. A cap b for a game G is tight
if it is minimal.

3 Quantitative Reductions

In this section, we lift the concept of reductions between qualitative games to
quantitative ones. Recall that a qualitative game G = (A,Win) is reducible
to G′ = (A′,Win′) via the memory structure M for A if A′ = A × M and
if ρ ∈ Win if and only if ext(ρ) ∈ Win′. Then, Player 0 wins G if and only
if she wins G′. Moreover, if σ′ is a winning strategy for Player 0 in G′ that
is implemented by M′, then a winning strategy for her in G is implemented
by M×M′.

Our main goal is to develop a notion of quantitative reductions that does
not only preserve winning plays, but also retains the cost of plays, possibly
with respect to some scaling. To allow for a very general notion of offset, we
introduce b-correction functions. Let b ∈ N∞. A function f : N∞ → N∞ is a
b-correction function if

– for all b′1 < b′2 < b we have f(b′1) < f(b′2),
– for all b′ < b we have f(b′) < f(b), and
– for all b′ ≥ b we have f(b′) ≥ f(b).

For b =∞ these requirements degenerate to demanding that f is strictly mono-
tonic, which in turn implies f(∞) =∞ and f(b) 6=∞ for all b 6=∞. Dually, for
b = 0 we only demand that f(0) bounds the values of f(b) from below. As an
example, the function capb, which is defined as capb(b

′) = min{b, b′} if b′ 6= ∞
and capb(∞) =∞ is a b-correction function for all parameters b ∈ N∞.

Let G = (A,Cst) and G′ = (A′,Cst′) be quantitative games, let M be some
memory structure for A, let b ∈ N∞, and let f : N∞ → N∞ be some function.
We say that G is b-reducible to G′ via M and f if all of the following hold true:

– A′ = A×M,
– f is a b-correction function,
– Cst′(ext(ρ)) = f(Cst(ρ)) for all ρ ∈ Plays(A) with Cst(ρ) < b, and
– Cst′(ext(ρ)) ≥ f(b) for all ρ ∈ Plays(A) with Cst(ρ) ≥ b.

We write G ≤bM,f G′ in this case, or G ≤bM G′, if f = capb. Note that the

penultimate condition implies that for each play ext(ρ) in A′ with Cst′(ext(ρ)) ≤
f(b) there exists some b′ such that Cst′(ext(ρ)) = f(b′).

Quantitative reductions are monotonic with respect to the parameter b:
If G ≤bM,f G′ for some b ∈ N∞ and b′ ≤ b, then G ≤b′M,f G′. Moreover, similarly
to the case of qualitative reductions, quantitative reductions are transitive.

Theorem 1. Let G1,G2,G3 be quantitative games where G1 ≤b1M1,f1
G2 ≤b2M2,f2

G3 for some b1, b2,M1,M2, f1, and f2. Then we have G1 ≤bM,f G3, where M =
M1 ×M2, f = f2 ◦ f1, and b = b1 if b2 ≥ f1(b1) and b = max{b′ | f1(b′) ≤ b2}
otherwise.

Proof. Let Gj = (Aj ,Cstj) for j ∈ {1, 2, 3}. Clearly, we have A3 = A2 ×M2 =
A1 ×M1 ×M2 and

f2 ◦ f1(Cst1(ρ)) = f2(Cst2(extM1
(ρ)))

= Cst3(extM2
(extM1

(ρ))) = Cst3(extM1×M2
(ρ))

for all ρ ∈ V ω. It remains to show that f2 ◦ f1 is a b-correction function, for
some b as stated in the theorem.

First, assume b2 ≥ f1(b1) and pick x and x′ such that x < x′ < b1. As f1 is
a b1-correction function, we obtain f1(x) < f1(x′), f1(x) < f1(b1), and f1(x′) <
f1(b1). Since f2 is a b2-correction function and as f1(b1) ≤ b2 by assumption, we
furthermore obtain f2(f1(b)) < f2(f1(x′)). Now pick some x such that x < b1.
Then f1(x) < f1(b1) and f2(f1(b1)) ≤ f2(b2). Thus, f2(f1(b)) < f2(f1(b1)).
Finally, pick some x such that x ≥ b1. Then f1(x) ≥ f1(b1). If f1(x) < b2,
then f2(f1(x)) ≥ f2(f1(b1)). If, however, f1(x) ≥ b2, then f2(f1(x)) ≥ f2(b2) ≥
f2(f1(b1)), which concludes this part of the proof.

Now assume b2 < f1(b1) and let b′ be maximal such that f1(b′) < b2. We
show that f2 ◦ f1 is a b′-correction function. First, pick x and x′ such that x <
x′ < b′. Then f1(x) < f1(x′) < b2, i.e., f2(f1(x)) < f2(f1(x′)). Now, pick x
such that x < b′. Then we have f1(x) < f1(b′) < b2, which implies f2(f1(x)) <
f2(f1(b′)). Finally, pick x such that x ≥ b′. If f1(x) < b2, then f1(x) ≥ f1(b′)
and f2(f1(x)) ≥ f2(f1(b′)). If, however, f1(x) ≥ b2, then f1(x) > f1(b′) and, as
f1(b′) < b2, we moreover obtain f2(f1(x)) ≥ f2(f1(b′)). ut

We now proceed to show that quantitative reductions indeed retain the costs
of strategies. To this end, we first demonstrate that correction functions indeed
tie the cost of plays in G′ to that of plays in G.

Lemma 1. Let G and G′ be quantitative games such that G ≤bM,f G′, for some b,
M, and f . All of the following hold true for all b′ ∈ N and all plays ρ in A:

1. If b′ < b and Cst′(ext(ρ)) < f(b′), then Cst(ρ) < b′.
2. If b′ < b and Cst′(ext(ρ)) = f(b′), then Cst(ρ) = b′.
3. If Cst′(ext(ρ)) ≥ f(b), then Cst(ρ) ≥ b.

Proof. 1) Let b′ < b and let ρ such that Cst′(ext(ρ)) < f(b′). Towards a contra-
diction assume Cst(ρ) = b′′ ≥ b′. We have f(b′′) = f(Cst(ρ)) = Cst′(ext(ρ)). If
b′′ < b, then we obtain f(b′) ≤ f(b′′), which implies f(b′) ≤ Cst′(ext(ρ)), con-
tradicting Cst′(ext(ρ)) < f(b′). If, however, b′′ ≥ b, then Cst′(ext(ρ)) = f(b′′) ≥
f(b) > f(b′), again contradicting Cst′(ext(ρ)) < f(b′).

2) Let b′ < b and let ρ such that Cst′(ext(ρ)) = f(b′). Towards a contradiction
assume Cst(ρ) = b′′ 6= b′. We again have f(b′′) = Cst′(ext(ρ)). First assume

b′′ < b′. Then we have b′′ < b′ < b, which implies f(b′′) < f(b′), contradicting
Cst′(ext(ρ)) = f(b′). If b′ < b′′ < b, we obtain the contradiction Cst′(ext(ρ)) >
f(b′) analogously. Finally, if b ≤ b′′, then Cst′(ext(ρ)) = f(b′′) ≥ f(b) > f(b′),
which again contradicts Cst′(ext(ρ)) = f(b′).

3) Let ρ such that Cst′(ext(ρ)) ≥ f(b). Towards a contradiction assume
Cst(ρ) = b′ < b. We again have f(b′) = Cst′(ext(ρ)). However, we obtain f(b′) <
f(b) due to f being a b-correction function. This contradicts Cst′(ext(ρ)) =
f(b′) ≥ f(b). ut

These properties of correction functions when used in quantitative reductions
enable us to state and prove the main result of this section. This result establishes
quantitative reductions as the quantitative counterpart to qualitative reductions:
If G ≤b+1

M,f G′ and b is a cap of G, then all plays of cost at most b in G are “tracked”
precisely in G′. Hence, as long as the cost of a strategy in G is at most b, it is
possible to construct a strategy in G′ whose cost is at most f(b). This holds true
for both players. If a strategy has cost greater than f(b), however, we do not
have a direct correspondence between costs of plays in G and G′ anymore. We
are, however, still able to claim the existence of a strategy of infinite cost for
Player 1 in G once he can ensure a cost greater than f(b) in G′, due to b being
a cap of G.

Theorem 2. Let G and G′ be determined quantitative games such that G ≤b+1
M,f

G′ for some b,M, and f , where b ∈ N is a cap of G.

1. Let b′ < b + 1. Player i has a strategy σ′ in G′ with Cst′(σ′) = f(b′) if and
only if she has a strategy σ in G with Cst(σ) = b′.

2. If Player 1 has a strategy τ ′ in G′ with Cst′(τ ′) ≥ f(b + 1), then he has a
strategy τ in G with Cst(τ) =∞.

Proof. 1) Let σ′ be a strategy for Player i in G′ such that Cst′(σ′) = f(b′) for
some b′ ≤ b. For all play prefixes π ending in a vertex in Vi in G, we define the
strategy σ for Player i in G via σ(π) = v, if σ′(ext(π)) = (v,m). Let the infinite
play ρ be consistent with σ. A straightforward induction shows that ρ′ = ext(ρ)
is consistent with σ′. If i = 0, then Cst′(ρ′) = Cst′(ext(ρ)) ≤ f(b′) and thus,
Cst(ρ) ≤ b′, due to Lemma 1.1 and Lemma 1.2, as b′ < b + 1. This in turn
implies Cst(σ) ≤ b′. If i = 1, we obtain Cst(ρ) ≥ b′ using similar reasoning.

Since b′ < b+1 <∞, we obtain f(b′) <∞: If f(b′) =∞, we have f(b′+1) =
∞, which contradicts strict monotonicity of f up to and including b+1. Let ρ′ be
a play consistent with σ′ such that Cst′(ρ′) = f(b′). Since Cst′(σ′) = f(b′) <∞,
such a play exists. Moreover, let ρ be the unique play such that ext(ρ) = ρ′. By
induction we obtain that ρ is consistent with σ. Additionally, we have Cst(ρ) = b′

due to Cst′(ρ′) = Cst′(ext(ρ)) = f(b′) and Lemma 1.2. Hence, Cst(σ) ≥ b′

if i = 0, and Cst(σ) ≤ b′ if i = 1.
Now let σ be a strategy in G with Cst(σ) = b′ < b. For all play pre-

fixes ext(π) = (v0,m0) · · · (vj ,mj) ending in a vertex in Vi ×M in G′, we define
the strategy σ′ as σ′(ext(π)) = (v,Upd(mj , v)) if σ(π) = v. We claim Cst′(σ′) =
f(b′). Let ext(ρ) be a play consistent with σ′. A straightforward induction yields

that ρ is consistent with σ, hence Cst(ρ) ≤ b′ and Cst(ext(ρ)) ≤ f(b′) due
to b′ < b+1. Hence, Cst′(σ′) ≤ f(b′). Now let ρ be a play consistent with σ such
that Cst(ρ) = b′. Since b′ < ∞, such a play exists. Via another straightforward
induction we obtain that ext(ρ) is consistent with σ′. As Cst′(ext(ρ)) = f(b′),
we obtain Cst′(σ′) ≥ f(b′).

2) Let τ ′ be a strategy for Player 1 in G′ with Cst′(τ ′) ≥ b + 1. We define
the strategy τ for Player 1 in G via τ(π) = v if τ ′(ext(π)) = (v,m) for all play
prefixes π in G. Let ρ′ be a play consistent with τ ′ such that Cst′(ρ′) ≥ f(b+ 1)
and let ρ be the unique play in G such that ext(ρ) = ρ′. A straightforward
induction yields that ρ is consistent with τ . Then we obtain Cst(ρ) ≥ b+ 1 due
to Lemma 1.3, which in turn implies Cst(τ) ≥ b + 1. Since b is a cap of G and
due to determinacy of G, this implies that there exists a strategy τ ′′ for Player 1
in G such that Cst(τ ′′) =∞. ut

We prove Theorem 2, by constructing optimal strategies for Player 0 in G
from optimal strategies for her in G′. These strategies use the set of all play
prefixes of G′ as memory states and are thus of infinite size. If Player 0 can play
achieve a certain cost in G′ using a finite-state strategy, however, then she can
do so in G with a finite-state strategy as well.

Theorem 3. Let G and G′ be quantitative games such that G ≤bM1,f
G for

some b, M, and f and let b′ ≤ b. If Player i has a finite-state strategy σ′

with Cst(σ′) = f(b′) in G′ that is implemented by M2, then she has a finite-
state strategy σ with Cst(σ) = b′ in G′ that is implemented by M1 ×M2.

Proof. Let G = (A,Cst), G′ = (A′,Cst′), M1 = (M1,m
1
I ,Upd1), and M2 =

(M2,m
2
I ,Upd2) such that σ′ is implemented by M2 with the next-move func-

tion Nxt′ : (V × M1) × M2 → (V × M1). We define Nxt(v, (m1,m2)) = v∗

if Nxt′((v,m1),m2) = (v∗,Upd(m1, v
∗)). Let σ be the strategy implemented

by M1 ×M2 with the next-move function Nxt.
Let ρ = v0v1v2 · · · be a play consistent with σ, let

extM1×M2
(ρ) = (v0,m

0
1,m

0
2)(v1,m

1
1,m

1
2)(v2,m

2
1,m

2
2) · · ·

be its extension with respect to M1 ×M2, and let j ∈ N such that vj ∈ V0.
Then vj+1 = σ(v0 · · · vj) = Nxt(vj , (m

1
j ,m

2
j)). Due to the definition of Nxt,

this implies Nxt′((vj ,m
1
j),m

2
j) = (vj+1,m

1
j+1), where m1

j+1 = Upd1(mj , vj+1)
due to the construction of A × M1. Hence, extM1

(ρ) is consistent with σ′,
i.e., Cst′(extM1(ρ)) ≤ f(b′), which in turn implies Cst(ρ) ≤ b′ for i = 0
and Cst′(extM1(ρ)) ≥ f(b′) and Cst(ρ) ≥ b′ for i = 1.

Note that, due to similar reasoning, for each play extM1
(ρ) consistent with σ′

the play ρ is consistent with σ′. If i = 1 or b′ < ∞, this concludes the proof.
If, however, i = 0 and b′ = ∞, then we furthermore obtain b = ∞ and
that f is a strictly monotonic function with f(∞) =∞. Hence, if there exists a
play extM1(ρ) consistent with σ′ with Cst′(extM1(ρ)) = ∞, then Cst(ρ) = ∞
and hence, Cst(σ) = ∞. If, however, the costs of the plays consistent with σ′

diverges, then the cost of the plays consistent with σ diverges as well and we
obtain Cst(σ) =∞. ut

After establishing quantitative reductions as the counterpart to qualitative
ones, we now turn our attention to providing a “backend” for such reductions.

4 Vertex-Ranked Games

We introduce a very simple form of quantitative games, so-called vertex-ranked
games. In such games, the cost of a play is determined solely by a qualitative
winning condition and a ranking of the vertices of the arena by natural numbers.
We provide tight bounds on the complexity of solving such games with respect
to a given bound and on the necessary memory for achieving such a bound.
Moreover, we discuss the optimization problem for such games, i.e., the problem
of determining the minimal b such that Player 0 has a strategy of cost at most b
in such a game.

Let A be an arena with vertex set V , let V ′ ⊇ V , let Win ⊆ (V ′)ω be a
(qualitative) winning condition, and let rank : V ′ → N be a ranking function on
vertices. We define the quantitative vertex-ranked sup-condition

Ranksup(Win, rank)(v0v1v2 · · ·)

=

{
supj→∞ rank(vj) if v0v1v2 · · · ∈Win

∞ otherwise

as well as its prefix-independent version, the vertex-ranked lim sup-condition

Ranklim(Win, rank)(v0v1v2 · · ·)

=

{
lim supj→∞ rank(vj) if v0v1v2 · · · ∈Win

∞ otherwise
.

A vertex-ranked sup- or lim sup-game G = (A,RankX(Win, rank)) with X ∈
{sup, lim} consists of an arena A with vertex set V , a qualitative winning condi-
tion Win, and a a vertex-ranking function rank : V → N. We assume the ranks
to be encoded in binary.

If G = (A,RankX(Win, rank)) is a vertex-ranked sup- or lim sup-game, we
call the game (A,Win) the qualitative game corresponding to G. Moreover, if Gsup
is a vertex-ranked sup-game, we denote the vertex-ranked lim sup-game with the
same arena, winning condition, and rank function by Glim and vice versa. In
either case, we denote the corresponding qualitative game by G.

The remainder of this section is dedicated to providing upper bounds on the
complexity of solving vertex-ranked games with respect to some given bound.
In particular, we show that vertex-ranked sup-games can be solved with only an
additive linear blowup compared to the complexity of solving the corresponding
qualitative games. Vertex-ranked lim sup-games, on the other hand, can be solved
while incurring only a polynomial blowup compared to solving the corresponding
qualitative games.

4.1 Solving Vertex-Ranked sup-Games

Let us start by noting that solving vertex-ranked sup-games is at least as hard
as solving their corresponding qualitative games. This is due to the fact that
Player 0 has a winning strategy in (G,Win) if and only if she has a strategy with
cost at most 0 in (A,Ranksup(Win, rank)), where rank assigns the rank zero to
every vertex.

We now turn our attention to finding an upper bound for the complexity
of solving vertex-ranked sup-games with respect to some bound. To achieve a
general treatment of such games, we first introduce some notation. Let G be a
class of qualitative games. We define the extension of G to vertex-ranked sup-
games as

Grnk
sup = {(A,Ranksup(Win, rank)) |

(A,Win) ∈ G, rank is vertex-ranking function for A} .

We first show that we can use a decision procedure solving games from G
to solve games from Grnk

sup with respect to a given b. To this end, we remove all
vertices from which Player 1 can enforce a visit to a vertex of rank greater than b
and proclaim that Player 0 wins the quantitative game with respect to b if and
only if she wins the qualitative game corresponding to the resulting quantitative
game. To ensure that we are able to solve the resulting qualitative game, we
assume some closure properties of G.

Let A = (V, V0, V1, E, vI) and A′ = (V ′, V ′0 , V
′
1 , E

′, v′I) be arenas. We say
that A′ is a sub-arena of A if V ′ ⊆ V , V ′0 ⊆ V0, V ′1 ⊆ V1, and E′ ⊆ E and
write A′ v A in this case. We call a class of qualitative (quantitative) games G
proper if for each (A,Win) ((A,Cst)) in G and each sub-arena A′ v A the
game (A′,Win) ((A′,Cst)) is a member of G as well, if all games in G are
determined and if all G ∈ G are finitely representable.

Moreover, in order to formalize the idea of removing vertices from which
one player can enforce a visit to some set of vertices, we recall the attractor
construction. Let A = (V, V0, V1, E, vI) be an arena and let X ⊆ V . We de-
fine Attri(X) = Attrni (X) inductively with Attr0i (X) = X and

Attrji (X) = {v ∈ Vi | ∃v′ ∈ Attrj−1i (X). (v, v′) ∈ E}
∪ {v ∈ V1−i | ∀(v, v′) ∈ E. v′ ∈ Attrj−1i (X)} ∪ Attrj−1i (X) .

Intuitively, Attri(X) is the set of all vertices from which Player i can enforce
a visit to X. The set Attri(X) can be computed in linear time in |V | and
Player i has a positional strategy σ such that each play starting in some vertex in
Attri(X) and consistent with σ eventually encounters some vertex from X [16].
We call σ the attractor strategy towards X.

Let A be an arena with vertex set V , let X ⊆ V , and let A = Attri(X).
If vI /∈ A, then we define A \ A = (V \ A, V0 \ A, V1 \ A,E \ (A× A), vI). Note
that A \ A is again an arena. We lift this notation to qualitative (quantitative)
games G = (A,Win) ((A,Cst)) by defining G \A = (A \A,Win) ((A \A,Cst)).

If vI ∈ A, however, then both A \ A and G \ A are undefined. The game G \ A
can be constructed in linear time and is of size at most |G|.

We now show that the idea behind the construction for solving vertex-
ranked sup-games described above is indeed correct.

Lemma 2. Let G be a proper class of qualitative games, let Gsup ∈ Grnk
sup with

vertex set V , initial vertex vI , and ranking function rank and let b ∈ N.
Player 0 has a strategy with cost at most b in Gsup if and only if vI /∈ A and

if she has a winning strategy in G \A, where A = Attr1({v ∈ V | rank(v) > b}).

Proof. Let Xb = {v ∈ V | rank(v) > b}. We first show that, if vI /∈ A and if
Player 0 wins G′ = G \A, say with strategy σ′, then she has a strategy of cost at
most b in Gsup. Since A′ v A, the strategy σ′ is a strategy for Player 0 in Gsup
as well and each play consistent with σ′ in G′ is consistent with σ′ in G as well
as vice versa. Let ρ be a play in Gsup consistent with σ′. Since σ′ is winning
for Player 0 in G′, we have ρ ∈ Win. Moreover, since Xb ⊆ A, and as ρ visits
only vertices occurring in G′, we obtain Ranksup(Win, rank)(ρ) ≤ b and thus
Cst(σ′) ≤ b, which concludes this direction of the proof.

For the other direction, first assume vI ∈ A, let τA be the attractor strategy
towards Xb for Player 1. We obtain Cst(τA) > b in Gsup: By playing consistently
with τA, Player 1 forces the play to eventually reach a vertex in Xb, i.e., a
vertex v with rank(v) > b. Thus, Cst(τA) > b, i.e., Cst(σ) > b for all strategies σ
of Player 0.

Finally, assume vI /∈ A and that Player 0 does not have a winning strategy
in G′. Towards a contradiction, additionally assume that she has a strategy σ
with cost at most b in Gsup. Note that no play consistent with σ visits any vertex
from A. Otherwise, playing consistently with his attractor strategy towards Xb

from the first visit to A, Player 1 could construct a play consistent with σ, but
with cost greater than b. Thus, σ is a strategy for Player 0 in G′ and we obtain
that all plays consistent with σ in A are consistent with σ in A′ and vice versa.
Since Cst(σ) ≤ b, we obtain Ranksup(Win, rank)(ρ) < ∞, i.e., ρ ∈ Win for all
plays ρ consistent with σ, a contradiction. ut

Using this lemma, we are able to construct a decision procedure solving games
from Grnk

sup using a decision procedure solving games from G.

Theorem 4. Let G be a proper class of qualitative games G that can be solved
in time t(|G|) and space s(|G|), where t and s are monotonic functions.

Then the following problem can be solved in time O(n) + t(|G|) and space
O(n)+s(|G|): “Given some game Gsup ∈ Grnk

sup with n vertices and some bound b ∈
N, does Player 0 win Gsup with respect to b?”

Proof. First note that, since G is proper, Grnk
sup is proper as well. Given the vertex-

ranked sup-game Gsup = (A,Ranksup(Win, rank)), let Xb = {v ∈ V | rank(v) >
b} and let A = Attr1(Xb). We define the decision procedure decsup deciding the
given problem such that it returns false if vI ∈ A. Otherwise, decsup returns true
if and only if Player 0 wins G \A. The procedure decsup indeed decides the given
decision problem due to Lemma 2.

Since we can compute and remove the Player-1-attractor A in linear time
in |A| = n [16], the decision procedure decsup indeed requires time O(n) + t(|G|)
and space O(n) + s(|G|). ut

This theorem provides an upper bound on the complexity of solving vertex-
ranked sup-games. In the proof of Lemma 2 we show that, for any vertex-
ranked sup-game Gsup, a winning strategy for Player 0 in G \ A has cost at
most b. Thus, an upper bound on the size of winning strategies for Player 0 for
games from G provides an upper bound for strategies of finite cost in Grnk

sup as
well. Moreover, if the decision procedure deciding G constructs winning strate-
gies for one or both players, we can adapt the decision procedure deciding Grnk

sup

to construct strategies of cost at most (greater than) b for Player 0 (Player 1)
as well.

Finally, this procedure enables us to solve the optimization problem for
vertex-ranked sup-games from Grnk

sup : Recall that if Player 0 wins Gsup with re-
spect to some b, she wins it with respect to all b′ ≥ b as well. Hence, using a
binary search, log(n) invocations of decsup suffice to determine the minimal b
such that Player 0 wins Gsup with respect to b. Hence, it is possible to determine
the minimal such b in time O(log(n)(n+ t(|G|))) and space O(n) + s(|G|).

4.2 Solving Vertex-Ranked lim sup-Games

We now turn our attention to solving vertex-ranked lim sup-games. For the same
reasons as above, solving these games is at least as hard as solving their corre-
sponding qualitative games. Thus, we again show upper bounds on the complex-
ity of solving these games. To this end, given some class G of games, we define
the corresponding vertex-ranked lim sup-games

Grnk
lim = {(A,Ranklim(Win, rank)) |

(A,Win) ∈ G, rank is vertex-ranking function for A} ,

We identify two sufficient criteria on classes of qualitative games G for quanti-
tative games in Grnk

lim being solvable with respect to some given b. More precisely,
we provide decision procedures for Grnk

lim if games from G can be solved in con-
junction with CoBüchi-conditions and if games from G are prefix-independent.

Let Glim = (A,Ranklim(Win, rank)) ∈ G with vertex set V and recall that
a play has cost at most b if it visits vertices of rank greater than b only finitely
often. In general, such behavior is formalized by the qualitative co-Büchi condi-
tion CoBüchi(F) = {ρ ∈ V ω | inf(ρ) ∩ F = ∅}, where inf(ρ) denotes the set of
vertices occurring infinitely often in ρ. Clearly, Player 0 has a strategy of cost at
most b in Glim if and only if she wins (A,Win∩CoBüchi({v ∈ V | rank(v) > b})).
This observation gives rise to the following remark.

Remark 1. Let G be a class of qualitative games such that games from {(A,Win∩
CoBüchi(F)) | (A,Win) ∈ G, F ⊆ V, V is vertex set of A} can be solved in
time t(|G|, |F |) and space s(|G|, |F |), where t and s are monotonic functions.

Then the following problem can be solved in time t(|G|, n) and space s(|G|, n):
“Given some game Glim ∈ Grnk

lim with n vertices and some bound b ∈ N, does
Player 0 win Glim with respect to b?”

In this first case, we use a decision procedure for solving qualitative games
as-is, which requires the existence of such a specific decision procedure. Such a
procedure trivially exists if the winning conditions of games from G are closed
under intersection with Co-Büchi conditions. Thus, we obtain solvability of a
wide range classes of vertex-ranked lim sup-games. We now turn our attention
to solving another wide range of such games. More precisely, we consider games
from Grnk

lim where the winning conditions of the qualitative games from G are
insensitive to finite prefixes.

Formally, we call a qualitative winning condition Win ⊆ V ω prefix-indepen-
dent if for all infinite plays ρ ∈ V ω and all play prefixes π ∈ V ∗, we have ρ ∈Win
if and only if πρ ∈Win. A qualitative game is prefix-independent if its winning
condition is prefix-independent. A class of games is prefix-independent if every
game in the class is prefix-independent.

We now turn our attention to games Glim from Grnk
lim where G is prefix-

independent. In order to do so, we adapt the classical algorithm for solving prefix-
independent qualitative games (cf., e.g., [7]). Thereby, we repeatedly compute
the set of vertices from which Player 0 has a strategy of cost at most b in Gsup
and remove their attractor from the game. Once the obtained games stabilize,
we proclaim that Player 0 has a strategy with cost at most b in Glim if and only
if vI was removed during the above construction.

In order to formalize this approach, let G be a quantitative game with vertex
set V . For each v ∈ V , we write Gv to denote the game G with its initial vertex
replaced by v. All other components, i.e., the structure of the arena and the cost-
function, remain unchanged. We write Wb

i (G) to denote the set of all vertices v
such that Player i has a strategy of cost at most b, if i = 0, or greater than b,
if i = 1, in Gv.

The approach described above is sound, as the sup-game is harder to win
than the lim sup-game for Player 0. Also, if Player 0 does not win the sup-game
from any vertex, then she also does not win the lim sup-game from any vertex.

Lemma 3. Let Glim = (A,Ranklim(Win, rank)) be some vertex-ranked lim sup-
game such that Win is prefix-independent and such that Gsup is determined.
If Wb

0(Gsup) = ∅, then Wb
0(Glim) = ∅.

Proof. Let V be the vertex set of Gsup and Glim. Since Wb
0(Gsup) = ∅ and

since Gsup is determined, we obtain Wb
1(Gsup) = V . For each v ∈ V , let τ ′v be a

strategy for Player 1 in (Gsup)v with cost greater than b. We now define a single
strategy τ for Player 1 in Glim with cost greater than b. For each π = v0 · · · vj ∈
V ∗ we define τ(π) = τ ′vk(vk · · · vj), where k = max{k′ | rank(vk′−1) > b},
with max ∅ = 0. We claim that τ has cost greater than b in all (Glim)v. As
all (Glim)v have the cost-function Cst, we formally claim Cst(τ) > b.

Let ρ = v0v1v2 · · · be a play of Gv consistent with τ . If there are infinitely
many positions j with rank(vj) > b, then Cst(ρ) > b. Thus, assume the opposite

and let j be the maximal position with rank(vj) > b. Then the suffix ρ′ =
vj+1vj+2vj+3 · · · of ρ is consistent with τ ′vj+1

. Since ρ′ does not encounter any
vertices of rank greater than b, while Cst(ρ′) > b due to ρ′ being consistent with
a strategy of cost greater than b, we obtain ρ′ /∈Win. This implies ρ /∈Win due
to prefix-independence of Win. Hence, Cst(ρ) = ∞, which, together with the
statement above, implies Cst(τ) > b. ut

We formalize the construction described above in the following theorem.

Theorem 5. Let G be a proper class of qualitative games G that can be solved
in time t(|G|) and space s(|G|), where t and s are monotonic functions.

Then the following problem can be solved in time O(n3 + n2 · t(|G|)) and
space O(n) + s(|G|): “Given some game Glim ∈ Grnk

lim with n vertices and some
bound b ∈ N, does Player 0 win Glim with respect to b?”

Proof. Given Glim = (A,Ranklim(Win, rank)) with vertex set V of size n, we
define G0 = Gsup, as well as Xj = Wb

0(Gj), Aj = Attr0(Xj), which is computed
in the arena of Gj , and Gj+1 = Gj \Aj for all j ∈ N. As we only remove vertices
from the Gj , we obtain Gj+1 v Gj . Thus, the series of games stabilizes at j = n
at the latest, i.e., Gj = Gn for all j ≥ n. We define A =

⋃
j≤nAj and G′ = Gn and

claim that Player 0 has a strategy with cost at most b in G if and only if vI ∈ A.
We first argue that this suffices to show the desired result.

Let decsup be the decision procedure deciding whether or not Player 0 has
a strategy with cost at most b in games from Grnk

sup , as constructed in the
proof of Theorem 4. The decision procedure decsup can be easily modified to
return W b

0 (Gj) instead of a yes/no-answer by applying it to each (Gj)v individu-
ally. This modified procedure dec′sup runs in time at most O(n2 + n · t(|G|)) and
space O(n) + s(|G|), where t(|G|) and s(|G|) are the time and space required to
solve G, respectively.

For j ∈ {0, . . . , n}, the decision procedure declim first computes Gj in linear
time in n and reusing the space used for solving Gj−1. It then computes Xj

requiring a single call to the modified decsup. It subsequently computes Aj in
time O(n) and space O(n). Finally, it returns false if and only if vI is in the arena
of Gn. In total, we obtain a runtime of declim of O(n3 + n2 · t(|G|)). The only
additional memory required by declim is that for storing the sets Xj and Aj , the
size of which is bounded from above by n. The games Gj can be stored by reusing
the memory occupied by G, due to Gj v Gj−1. Hence, the procedure declim
requires space O(n) + s(|G|).

It remains to show that Player 0 has a strategy with cost at most b in G if
and only if vI /∈ An, i.e., if v ∈ A. To this end, first assume vI ∈ A and note
that we have Aj ⊇ Xj . However, for each two j 6= j′, we have Aj ∩Aj′ = ∅ and,
in particular, Xj ∩Xj′ = ∅. Hence, for each v ∈ A there exists a unique j such
that v ∈ Aj .

We define the strategy σ for Player 0 in G inductively such that any play
consistent with σ only descends through the Xj . Formally, we construct σ such
that it satisfies the following invariant:

Let ρ = v0v1v2 · · · be a play consistent with σ and let k ∈ N. If vk ∈
Aj \Xj , then vk+1 ∈

⋃
j′≤j Aj′ ∪Xj′ . Moreover, if vk ∈ (Aj \Xj) ∩ V0,

then the move to vk+1 is the move prescribed by the attractor strategy
of Player 0 towards Xj . If vk ∈ Xj , then vk+1 ∈ Xj ∪

⋃
j′<j Aj′ ∪Xj′ .

Clearly, this invariant holds true for π = vI . Thus, let π = v0 · · · vk be a play
prefix consistent with σ. If vk ∈ V1, let v∗ be an arbitrary successor of vk in G and
assume towards a contradiction that πv∗ violates the invariant. If vk ∈ Aj \Xj ,
then in Gj there exists an edge from vk leading to some vertex v∗ /∈ Aj , a
contradiction to the definition of the attractor. If, however, vk ∈ Xj and v∗ /∈
Xj ∪

⋃
j′<j Aj′ ∪Xj′ , then Player 1 has a strategy τ in (Gj)v∗ with cost greater

than b. Thus, a play that begins in vk, moves to v∗ and is consistent with τ
afterwards has cost greater b, i.e., Player 0 does not have a strategy with cost
at most b in (Gj)vk , a contradiction to vk ∈ Xj = Wb

0(Gj). Hence, πv∗ satisfies
the invariant for each successor v∗ of vk ∈ V1.

Now assume vk ∈ V0 and first let v0 ∈ Aj ∪ Xj for some j ∈ N. Let σAj
be the attractor strategy for Player 0 towards Xj . If vk ∈ Aj \ Xj , we de-
fine σ(π) = σAj (vk), which satisfies the invariant due to the definition of the
attractor strategy. If, however, vk ∈ Xj , let k′ be minimal such that vk′′ ∈ Xj

for all k′′ with k′ ≤ k′′ ≤ k. Moreover, let σvj be a strategy for Player 0 such
that every play consistent with σvj in Gj with initial vertex v has cost at most b.

Such a strategy exists due to Xj = Wb
0(Gj). We define σ(π) = σ

vk′
j (vk′ · · · vk),

which satisfies the invariant to similar reasoning as above.
In order to show Cst(σ) ≤ b, let ρ = v0v1v2 · · · be a play consistent with σ.

Due to the invariant of σ and since v0 ∈ A, the play ρ descends through the Aj
and the Xj , i.e., once it encounters some Xj , it never moves to any Aj′ \ Xj′

with j′ ≥ j nor to any Xj′ with j′ > j. Also, ρ stabilizes in some Xj , i.e.,
there exists a k ∈ N such that vk′ ∈ Xj for all k′ ≥ k, as σ prescribes
moves according to the attractor strategy towards Xj when in Aj \ Xj . More-
over, due to the definition of σ, the suffix ρ′ = vkvk+1vk+2 · · · is consistent
with σvkj , i.e., we obtain ρ′ ∈ Win and that the maximal vertex-rank encoun-
tered in ρ is at most b. As Win is prefix-independent, we obtain ρ ∈ Win as
well as lim supk→∞ rank(vk) ≤ b. Hence, Ranklim(Win, rank)(ρ) ≤ b, which
concludes this direction of the proof.

Now assume vI /∈ A and consider G′ with vertex set V \A. Since the construc-
tion of the Gj stabilized, we have Aj = Xj = W b

0 (G′) = ∅, i.e., Player 1 has a
strategy with cost greater than b from any starting vertex in G′. Due to Lemma 3,
this implies that he has such a strategy from every vertex in Gsup \ A, call it τ .
Note that there exists no Player-0-vertex in V \A that has an outgoing edge lead-
ing into A, as this would contradict the definition of the Player-0-attractors Aj .
Hence, τ is a strategy for Player 1 in G as well and we retain Cst(τ) > b. ut

The strategy σ for Player 0 constructed in the proof of Theorem 5 works
by “stitching together” the attractor-strategies leading her to the Xj and the
strategies for her in the respective vertex-ranked sup-games. As no play consis-
tent with σ ever returns to earlier Xj or Aj , we can reuse the memory states of

the winning strategies in the Gj when implementing σ. Thus, a monotonic upper
bound on the size of strategies with cost at most b in Gsup is an upper bound on
the size of such strategies in Glim as well.

Moreover, in order to find the optimal b such that Player 0 wins Glim with
respect to b, we can again employ a binary search. Thus, we can determine the
optimal such b in time O(log(n)(n3 + n2 · t(|G|))) and space O(n) + s(|G|).

5 Applications

Having defined the framework of quantitative reductions in Section 3 and vertex-
ranked games as general-purpose targets for such reductions in Section 4, we
now turn to applications of both concepts. In particular, we first reduce request-
response games with costs to vertex-ranked request-response games, thereby
establishing ExpTime-membership of the problem of solving the former games
with respect to a given bound. Moreover, we reduce quantitative Muller games to
quantitative safety games, thus providing a novel proof of ExpTime-membership
of the problem of solving the former games with respect to a given bound.

5.1 Reducing Request-Response Games with Costs to
Vertex-Ranked Request-Response Games

Recall that a play satisfies the qualitative request-response condition if every
request that is opened is eventually answered. We extend this condition to a
quantitative one by equipping the edges of the arena with costs and measuring
the maximal cost incurred between opening and answering a request.

Formally, the qualitative request-response condition ReqRes(Γ) consists of
a family of so-called request-response pairs Γ = (Qc, Pc)c∈[d]. Player 0 wins a
play according to this condition if each visit to some vertex from Qc is answered
by some later visit to a vertex from Pc, i.e., we define

ReqRes((Qc, Pc)c∈[d]) = {v0v1v2 · · · ∈ V ω |
∀c ∈ [d]∀j ∈ N. vj ∈ Qc implies ∃j′ ≥ j. vj′ ∈ Pc} .

We say that a visit to a vertex from Qc opens a request for condition c and
that the first visit to a vertex from Pc afterwards answers the request for that
condition.

Theorem 6.

1. Request-response games with n vertices and d request-response pairs can be
solved in time O(n2d22d). [18]

2. Let G be a request-response game with d request response pairs. If Player 0
has a winning strategy in G, then she has a finite-state winning strategy of
size at most d2d [18].

We extend this winning condition to a quantitative one using families of cost
functions Cst = (Cstc)c∈[d], where Cstc : E → N for each c ∈ [d]. The cost-of-
response for a request for condition c at position j is defined as

ReqResCorc(v0v1v2 · · · , j)

=

{
min{Cstc(vj · · · vj′) | j′ ≥ j and vj′ ∈ Pc} if vj ∈ Qc
0 otherwise

,

with min ∅ =∞, which naturally extends to the (total) cost-of-response

ReqResCor(ρ, j) = maxc∈[d] ReqResCorc(ρ, j) .

Finally, we define the request-response condition with costs as

CostReqRes(Γ,Cst)(ρ) = supj→∞ReqResCor(ρ, j) ,

i.e., it measures the maximal cost incurred by any request in ρ.
A game G = (A,CostReqRes(Γ,Cst)) is called a request-response game

with costs. We denote the largest cost assigned to any edge by W . As we assume
the functions Cstc to be given in binary encoding, the largest cost W assigned
to an edge may be exponential in the description length of G.

If all Cstc assign zero to every edge, then the request-response condition
with costs coincides with the qualitative request-response condition. In general,
however, the request-response condition with costs is a strengthening of the
classical request-response condition: If some play ρ has finite cost according
to the condition with costs, then it is winning for Player 0 according to the
qualitative condition, but not vice versa.

Remark 2. Let G = (A,CostReqRes(Γ,Cst)) be a request-response game with
costs. If a strategy σ for Player 0 in G has finite cost, then σ is a winning strategy
for Player 0 in (A,ReqRes(Γ)).

Using this remark and a detour via qualitative request-response games, we
provide a cap for request-response games with costs.

Lemma 4. Let G be a request-response game with costs with n vertices, d re-
quest-response pairs, and highest cost of an edge W . If Player 0 has a strategy
with finite cost in G, then she also has a strategy with cost at most d2dnW .

Proof. Let G = (A,CostReqRes(Γ,Cst)) and let G′ = (A,ReqRes(Γ)) be a
qualitative request-response game obtained by disregarding the cost functions
of G. Moreover, let σ be a strategy with finite cost for G. Due to Remark 2, σ is
winning for Player 0 in G′ as well, i.e., Player 0 wins G′. Thus, due to Theorem 6.2,
she has a winning strategy σ′ of size at most d2d in G′. Let σ′ be implemented
by the memory structure M and let b = d2dnW . We show Cst(σ′) ≤ b.

Let ρ = v0v1v2 · · · be a play consistent with σ′ and assume towards a con-
tradiction CostReqRes(Γ,Cst)(ρ) > b. Then there exist c ∈ [d] and j ∈ N

such that ReqResCorc(ρ, j) > b. As each edge has cost at most W , the re-
quest for condition c opened at position j is not answered for at least d2dn
steps, i.e., we obtain vj′ /∈ Pc for all j′ with j ≤ j′ ≤ j + d2dn. Let ext(ρ) =
(v0,m0)(v1,m1)(v2,m2) · · · . Since |M| ≤ d2d, there exists a vertex repetition on
the play infix (vj ,mj) · · · (vj+d2dn,mj+d2dn) of ext(ρ), say at positions k and k′

with j ≤ k < k′ ≤ j + d2dn. Then the play ρ′ = v0 · · · vk(vk+1 · · · vk′)ω is
consistent with σ′.

In ρ′, however, a request for condition c is opened at position j ≤ k. Since j ≤
k′ ≤ j + d2dn, this request is not answered in the play infix vj · · · vk · · · vk′ , i.e.,
it is never answered. Hence, ρ′ /∈ ReqRes(Γ), which contradicts σ′ being a
winning strategy for Player 0 in G′. ut

Having obtained a cap for request-response games with costs, we can now
turn to the main result of this section: Request-response games with costs are
reducible to vertex-ranked sup-request-response games. In order to show this, we
use a memory structure that keeps track of the costs incurred by the requests
open at each point in the play [19].

Lemma 5. Let G be a request-response game with costs with n vertices, d re-
quest-response pairs, and highest cost of an edge W . Then G ≤b+1

M G′ for b =
d2dnW , some memory structure M of size O(2nbd), and a vertex-ranked sup-
request-response game G′ with d request-response pairs.

Proof. Let G = (A,CostReqRes(Γ,Cst)) with initial vertex vI . Recall that b =
d2dnW , is a cap of G due to Lemma 4. We first define the memory structureM.
Intuitively, we use it to keep track of the currently open requests and the costs
they have incurred up to the cap b. Once the cost of a single request incurs a
cost greater than b, the memory structure raises a Boolean flag, which indicates
that Player 1 can unbound the cost of that request.

Let r : [d]→ {⊥}∪ [b+ 1] = {⊥, 0, . . . , b} be a function mapping conditions c
to the cost r(c) ∈ [b+1] they have incurred so far, or to r(c) = ⊥ if no request for
that condition is pending. We call such a function a request-function and denote
the set of all request functions by R. We define the initial request function rI
such that rI(c) = 0 if vI ∈ Qc and rI(c) = ⊥ otherwise. In order to be able to
access the current vertex during the update of the memory structure, we store it
in the memory structure as well. By accessing the current vertex together with
the vertex that we move to, we are thus able to obtain the cost of the traversed
edge. Finally, we store a flag that indicates whether or not the bound b has been
exceeded. Hence, we define the set of memory states M = V × R × {0, 1} with
the initial memory state mI = (vI , rI , 0).

We define the update function Upd((v, r, f), v′) = (v′, r′, f ′) by performing
the following steps in order:

– For each c ∈ [d], if r(c) 6= ⊥, set r′(c) = r(c) + Cstc((v, v
′)). Otherwise,

set r′(c) = ⊥.
– Now, if there exists a condition c such that r′(c) > f , then set r′(c) = ⊥ for

all c and set f ′ to 1. Otherwise, set f ′ to f .

– For each c ∈ [d], if v′ ∈ Qc, set r(c′) to max{r(c′), 0} where ⊥ < 0.

– For each c ∈ [d], if v′ ∈ Pc, set r(c′) to ⊥.

We obtain M = (M,mI ,Upd). Note that |M| ∈ O(2nbd), i.e., M is of
exponential size in d, but only of polynomial size in n and W .

Using this definition, we obtain that if we have CostReqRes(Γ,Cst)(ρ) ≤
b, then ext(ρ) remains in vertices of the form (v, v, r, 0). Dually, if we have
CostReqRes(Γ,Cst)(ρ) > b, then ext(ρ) eventually moves to vertices of the
form (v, v, r, 1) and remains there ad infinitum.

Let Γ = (Qc, Pc)c∈[d]. In order to obtain G′, it remains to define the vertex-
ranking function rank : V ×M → N, as well as the family of request-response
pairs Γ ′ for G′. We define the former as rank(v, v, r, 0) = maxc∈[d] r(c) and
rank(v, v, r, 1) = b + 1 and the latter as Γ ′ = (Q′c, P

′
c)c∈[d], where Q′c = Qc ×

Qc × R × {0, 1} and P ′c = Pc × Pc × R × {0, 1} for all c ∈ [d]. Note that
ρ ∈ ReqRes(Γ) if and only if ext(ρ) ∈ ReqRes(Γ ′). Moreover, let ρ = v0v1v2
be some play in G and let ext(ρ) = (v0, v0, r0, f0)(v1, v1, r1, f1)(v2, v2, r2, f2) · · ·
be its extension. Note that the current vertex vj is replicated in the memory
state in order to be able to access it in the update of the memory state during
the move to vj+1, thereby attaining access to the traversed edge (vj , vj+1). If
CostReqRes(Γ,Cst)(ρ) ≤ b and if, for some c ∈ [d] and some j ∈ N, we
have ReqResCorc(ρ, j) = b′, then rj′(c) = b′, where j′ is the earliest position
at which the request for c opened at position j is answered. Dually, if rj′(c) = b′

for some j′ ∈ N and some c ∈ [d], then ReqResCorc(ρ, j) = b′, where j is the
earliest position at which the request for condition c is opened without being
answered prior to position j′.

We define G′ = (A×M,Ranksup(ReqRes(Γ ′), rank)). Moreover, since Γ ′ is
the extension of Γ to the vertices of A×M, G′ contains d many request-response
pairs.

It remains to show G ≤b+1
M G′. Recall that the (b+1)-correction-function ∩b+1

is given implicitly. Clearly, the first and second condition of the definition of the
quantitative reduction hold true, i.e., the arena of G′ is A ×M and capb+1 is
a (b + 1)-correction function. It remains to show the two latter conditions. To
this end, let ρ = v0v1v2 · · · ∈ V ω and let

ext(ρ) = (v0, v0, r0, f0)(v1, v1, r1, f1)(v2, v2, r2, f2) · · · .

We introduce the shorthands CstG = CostReqRes(Γ,Cst) and CstG′ =
Ranksup(ReqRes(Γ ′), rank).

We first show CstG(ρ) = CstG′(ext(ρ)) for all ρ with CstG(ρ) < b + 1.
Let CstG(ρ) = b′ < b + 1 and note that this implies ρ ∈ ReqRes(Γ) and
ext(ρ) ∈ ReqRes(Γ ′). As argued above, we obtain rank(vj , vj , rj , fj) ≤ b′ for
all j, which implies CstG′(ext(ρ)) ≤ b′. Moreover, let c ∈ [d] and j ∈ N such
that ReqResCorc(ρ, j) = b′. Since b′ <∞, such c and j exist. The play ext(ρ)
visits a vertex of rank b′ at the position at which the request for condition c
opened at position j is answered for the first time. Thus, CstG′(ext(ρ)) ≥ b′,
which concludes this part of the proof.

It remains to show that CstG′(ext(ρ)) ≥ capb+1(b+ 1) = b+ 1 holds true for
all ρ with CstG(ρ) ≥ b+1. To this end, let CstG(ρ) = b′ ≥ b+1. As argued above,
the extended play ext(ρ) eventually moves to vertices of the form (v, v, r, 1)
and remains there. Hence, CstG′(ext(ρ)) = b + 1 if ρ ∈ ReqRes(Γ), i.e., if
ext(ρ) ∈ ReqRes(Γ ′). If, however, ρ /∈ ReqRes(Γ), then ext(ρ) /∈ ReqRes(Γ ′)
and hence, CstG′(ρ) =∞ > b+ 1. ut

Thus, in order to solve a request-response game with costs with respect to
some b, it suffices to solve a vertex-ranked sup-request-response game with re-
spect to b. This, in turn, can be done by reducing the problem to that of solving
a request-response game as shown in Theorem 4. Using this reduction together
with the framework of quality-preserving reductions, we are able to provide an
upper bound on the complexity of solving request-response games with respect
to some bound b.

Theorem 7. The following decision problem is in ExpTime: “Given some re-
quest-response game with costs G and some bound b ∈ N, does Player 0 have a
strategy σ with Cst(σ) ≤ b in G?”

Proof. Let G contain n vertices, d request-response pairs, and let W be the
largest cost assigned to any edge. We first construct the vertex-ranked sup-
request-response game G′ as shown in Lemma 5. Recall that the game G′ con-
tains O(n(d2dnW)d) vertices and d request-response pairs. Due to the instanti-
ation of Theorem 4 with the decision procedure for qualitative request-response
games from Theorem 6.1, the game G′ can be solved with respect to b in time
O(n3(d2dnW)3dd22d), which is exponential in the description length of G, due

to W 3d ∈ O((2|G|)|G|) = O(2|G|
2

). ut

Moreover, request-response games are known to be ExpTime-hard [6]. Thus,
solving quantitative request-response games via quantitative reductions is a-
symptotically optimal.

Also, recall that Player 0 has a strategy with cost b′ in some request-response
game with costs if and only if she has a strategy with cost b′ in the vertex-ranked
sup-request-response game G′ constructed in the proof of Lemma 5, which has as
many request-response pairs d as G. Due to Theorem 6.2, if she has a strategy of
cost at most b′ in G′, she has one of the same cost and of size at most d2d in G′,
as argued in Section 4.1. Hence, due to Theorem 3, we obtain an exponential
upper bound on the size of optimal strategies for Player 0.

Corollary 1. Let G be a request-response game with costs with n vertices, d
request-response pairs, and highest cost of an edge W . If Player 0 has a strat-
egy with finite cost, then she also has a strategy with the same cost of size at
most O(nbdd2d), where b = d2dnW .

Finally, the optimization problem of finding the minimal b′ such that Player 0
wins a request-response game G with respect to b′ can be solved in exponential
time as well. Recall that if Player 0 wins G with respect to some b′, then she also

wins it with respect to all b′′ ≥ b′. Since we can assume b′ ≤ b = d2dnW , we can
perform a binary search for b′ on the interval {0, . . . , b}. Hence, the optimal b′

can be found in time O(log(b)n3b3dd2d).

5.2 Reducing Quantitative Muller Games to
Vertex-Ranked Safety Games

Having shown how our framework can be used to find optimal strategies in
request-response games with costs in a structured and modular way, we now show
how it can be used to greatly simplify such existing proofs. To this end, we show
how to reduce quantitative Muller games to vertex-ranked safety games [15].

Let A be some arena with vertex set V and recall the qualitative Muller con-
dition, which is defined by a partition of 2V into (F0,F1) as Muller(F0,F1) =
{ρ ∈ V ω | inf(ρ) ∈ F0}, where inf(ρ) denotes the set of vertices that are visited
infinitely often by ρ.

McNaughton introduced a quantitative characterization of the Muller con-
dition by assigning a score to each prefix of a play and each subset of the set
of vertices [14]. In order to characterize the infinity-set of a play, the score of a
subset F measures how often F has been visited completely without leaving it.
For a play ρ, the limes inferior of the score of inf(ρ) tends towards infinity, while
the limes inferior of the score for all other sets is zero [14].

Formally, for any set F ⊆ V with F 6= ∅, the score ScoreF (π) is defined
inductively using an accumulator that stores the vertices of F that have already
been visited, as (AccF (ε),ScoreF (ε)) = (∅, 0) and

(AccF (πv),ScoreF (πv)) =
(∅, 0) if v /∈ F
(∅,ScoreF (π) + 1) if AccF (π) = F \ {v}
(AccF (π) ∪ {v},ScoreF (π)) otherwise

We generalize the score-function to families F of subsets of vertices, i.e., F ⊆
2V , by defining ScoreF (π) = maxF∈F (ScoreF (π)) and to infinite plays by defin-
ing ScoreF (v0v1v2 · · ·) = supj→∞ ScoreF1

(v0 · · · vj). This definition inspires the
quantitative Muller condition, which is defined as QuantMuller(F0,F1)(ρ) =
ScoreF1(ρ). We obtain a cap for such games using a result by Fearnley and
Zimmermann [10].

Lemma 6. Let G = (A,Cst) be a quantitative Muller game. If Player 0 has a
strategy with finite cost in G, then she has a strategy σ with Cst(σ) ≤ 2.

Proof. Let G = (A,QuantMuller(F0,F1)). Since Cst(σ) <∞, for every play ρ
consistent with σ and every prefix π of ρ, we have that there exists an upper
bound on ScoreF (π) for all F ∈ F1. Moreover, as the score of inf(ρ) tends to-
wards∞, this implies inf(ρ) ∈ F0, i.e., σ is a winning strategy for the qualitative
Muller game G′ = (A,Muller(F0,F1)).

Since Player 0 wins G′, she has a strategy σ′ with ScoreF1(π) ≤ 2 for all pre-
fixes π of all plays consistent with σ′ [10] . Thus QuantMuller(F0,F1)(σ′) ≤ 2
indeed holds true. ut

We now show how to reduce quantitative Muller games to vertex-ranked sup-
safety games based on previous work by Neider et al. [15]. Recall that a safety
game is a very simple qualitative game, in which it is Player 0’s goal to avoid a
certain set of undesirable vertices. The constructed safety game uses play prefixes
of cost at most 3 as vertices and mimics plays π of cost at most 3 in the Muller
game by moving to some vertex π′ such that the score and the accumulator are
equal in π and π′ for all F ∈ F1. We show how to lift this qualitative construction
to the setting of quantitative games by providing a quantitative reduction from
quantitative Muller games to vertex-ranked sup-safety games.

Lemma 7. Let G be a quantitative Muller game with vertex set V . There exists
a memory structure M of size at most (|V |!)3 and a vertex-ranked sup-safety
game G′ such that G ≤3

M G′.

Proof. Let G = (A,Cst) with vertex set V and Cst = QuantMuller(F0,F1).
We say that two play prefixes π and π′ are F1-equivalent if they end in the same
vertex and if, for each F ∈ F1, we have AccF (π) = AccF (π′) and ScoreF (π) =
ScoreF (π′). In this case, we write π ≈F1 π

′. For each play π, we denote the F1-
equivalence-class of π by [π]≈F1

. Let Plays≤2 = {π ∈ V ∗ | ScoreF1
(π) ≤ 2}. For

the sake of readability, we omit the F1 for the remainder of this proof wherever
unambiguously possible.

We define the set of memory states M = Plays≤2
/
≈ ∪{⊥}, the initial

memory state mI = [vI], and the update function Upd as Upd(⊥, v) = ⊥,
Upd(π, v) = [πv] if ScoreF1

(πv) ≤ 2 and Upd(π, v) = ⊥ otherwise. We ob-
tain |M | ∈ O(|Plays≤2

/
≈|). Since |Plays≤2

/
≈ | ≤ (|V |!)3, the memory struc-

ture M is indeed of exponential size in |V | [15].
A straightforward induction shows that this memory structure tracks the

score of a play precisely as long as it does not exceed the value two on any
prefix. More formally, it satisfies the following invariant:

Let π = v0 · · · vj be a play prefix in G such that ScoreF1
(v0 · · · vk) ≤ 2

for all k with 0 ≤ k ≤ j. Moreover, let Upd+(π) = π′. Then π ≈ π′.

Recall Safety(S) = {v0v1v2 · · · ∈ V ω | ∀j ∈ N. vj /∈ S}. We define the vertex-
ranked sup-safety game G′ = (A×M,Ranksup(Safety(V ×{⊥}), rank)), where
rank(v, π) = ScoreF1(π) for all π ∈ Plays≤2, and rank(v,⊥) = 3.

Let Cst′ = Ranksup(Safety(V × {⊥}), rank). Clearly, the first two items
of the definition of G ≤3

M G′ hold true. Moreover, G′ is indeed of exponential
size in |G|, as argued above. It remains to show Cst(ρ) = Cst′(ext(ρ)) for all ρ
with Cst(ρ) < 3 and Cst′(ext(ρ)) ≥ 3 for all other ρ.

First, let ρ = v0v1v2 · · · be some play with Cst(ρ) ≤ 2 and let ext(ρ) =
(v0,m0)(v1,m1)(v2,m2) · · · . Then ScoreF1(v0 · · · vj) ≤ 2 for all j ∈ N. Thus,
due to the invariant above and the definition of rank , we obtain rank(vj ,mj) =
Score(v0 · · · vj) for all j ∈ N, which implies Cst′(ext(ρ)) = Cst(ρ).

Towards a proof of the latter statement, let ρ = v0v1v2 · · · be a play such
that Cst(ρ) ≥ 3 and let j be the minimal position such that Cst(v0 · · · vj) = 3.
Since Cst(v0 · · · vj) = ScoreF (v0 · · · vj) for some F ∈ F1 and since the score
is at most incremented during each step, we obtain ScoreF (v0 · · · vj−1) = 2
and AccF (v0 · · · vj−1) = F \ {vj}. Let Upd+(v0 · · · vj−1) = π′. Due to the invari-
ant we obtain ScoreF (π′) = 2 and AccF (π′) = F \{vj}. Thus, ScoreF (π′vj) = 3,
hence ext(v0 · · · vj) = (v0,mI) · · · (vj ,⊥), which implies ext(ρ) /∈ Safety(V ×
{⊥}), which in turn yields Cst′(ext(ρ)) =∞ > 3. ut

Thus, in order to solve a quantitative Muller game with respect to some b,
it suffices to solve a vertex-ranked sup-safety game G′ with respect to b. Recall
that this is only constructive if Player 0 wins G′ with respect to b < 3, i.e., only
in this case are we able to construct a strategy with cost at most b for her in G.
Otherwise, Theorem 2 yields the existence of a strategy of cost ∞ for Player 1
in G, but we cannot construct such a strategy from his strategy of cost greater
than two in G′. This is consistent with results of Neider et al. [15] and with the
fact that Muller conditions are in a higher level of the Borel hierarchy than safety
conditions, i.e., qualitative Muller games cannot be reduced to safety games.

We can, however, solve the resulting vertex-ranked safety game with respect
to a given bound by solving a qualitative safety game as shown in Theorem 4.
Using this reduction together with the framework of quality-preserving reduc-
tions, we obtain an upper bound on the complexity of solving quantitative Muller
games with respect to some bound b.

Theorem 8. The following problem is in ExpTime: “Given some quantitative
Muller game G and some bound b ∈ N, does Player 0 win G with respect to b?”

Proof. Given G, we first construct the vertex-ranked sup-safety game G′ as shown
in Lemma 7. Recall that G′ contains at most (|V |!)3 vertices. Due to Theorem 4
and the fact that safety games can be solved in linear time in the number of
vertices, G′ can indeed be solved in time at most (|V |!)3 with respect to a given
bound b, which is exponential in the number of vertices |V | of G. ut

As discussed in Section 4.1, since both players have positional winning strate-
gies in safety games, Lemma 7 yields that if Player 0 has a strategy with cost at
most 3 in a quantitative Muller game G, then she also has a strategy in G with
the same cost and of size at most exponential in |V |. Moreover, finding the min-
imal b such that Player 0 has a strategy of cost at most b in G requires solving
at most three safety games of exponential size in |V |. Thus, the optimization
problem for quantitative Muller games can be solved in exponential time.

6 Conclusion

In this work, we have lifted the concept of reductions, which has yielded a multi-
tude of results in the area of qualitative games, to quantitative games. We have

shown that this novel concept exhibits the same useful properties for quanti-
tative games as it does for qualitative ones and, moreover, that it retains the
quality of strategies.

Additionally, we have provided two very general types of quantitative games
that serve as targets for quantitative reductions, i.e., vertex-ranked sup games
and vertex-ranked lim sup-games. For both kinds of games we have provided tight
bounds on the complexity of solving them with respect to some bound, on the
memory necessary to achieve a given cost, and on the complexity of determining
the optimal cost that either player can ensure.

Finally, we have demonstrated the usefulness of quantitative reductions and
vertex-ranked games by providing reductions from quantitative request-response
games to vertex-ranked request-response games and from quantitative Muller
games to vertex-ranked safety games. Thereby, we have obtained tight bounds
on the complexity of solving the former games optimally and an upper bound on
the complexity of solving the latter games optimally. For quantitative request-
response games, no such bound was known previously. Both proofs show that our
framework enables well-structured and modular analyses of quantitative games.

The reduction of request-response games with costs to vertex-ranked request-
response games yields a tight upper bound on the runtime complexity of solving
such games optimally. The reduction of Muller games to safety games, however,
shows that an approach via reductions may not always yield optimal runtime
complexity. Consider also, for example, the problem of solving parity games
with costs with respect to some bound, which is PSpace-complete [19]. It is
possible to reduce this problem to that of solving a vertex-ranked parity game
of exponential size and linearly many colors similarly to the reduction presented
in this work, which yields an ExpTime-algorithm. It remains open how to use
quantitative reductions to obtain an algorithm for this problem that only requires
polynomial space.

Finally, another goal for future work is the establishment of an analogue to
the Borel hierarchy for quantitative winning conditions. In the qualitative case,
this hierarchy establishes clear boundaries for reductions between infinite games,
i.e., a game whose winning condition is in one level of the Borel hierarchy cannot
be reduced to one with a winning condition in a lower level. Also, each game
with a winning condition in the hierarchy is known to be determined [13]. To the
best of our knowledge, it is open how to define such a hierarchy for quantitative
winning conditions which exhibits similar properties.

References

1. Bouyer, P., Markey, N., Randour, M., Larsen, K.G., Laursen, S.: Average-energy
games. Acta Informatica (2016)

2. Bruyère, V., Hautem, Q., Randour, M.: Window parity games: an alternative ap-
proach toward parity games with time bounds. In: Cantone, D., Delzanno, G. (eds.)
GandALF. EPTCS, vol. 226, pp. 135–148 (2016)

3. Chatterjee, K., Doyen, L.: Energy parity games. TCS 458, 49–60 (2012)

4. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized Mean-payoff
and Energy Games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS. LIPIcs, vol. 8,
pp. 505–516 (2010)

5. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games.
ACM Trans. Comput. Log. 11(1) (2009)

6. Chatterjee, K., Henzinger, T.A., Horn, F.: The complexity of request-response
games. In: Language and Automata Theory and Applications, pp. 227–237.
Springer Nature (2011)

7. Chatterjee, K., Henzinger, T.A., Piterman, N.: Algorithms for Büchi games. In:
GDV (2006)

8. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
nat. J. Game Theory 8, 109–113 (1979)

9. Faymonville, P., Zimmermann, M.: Parametric linear dynamic logic. In: Peron, A.,
Piazza, C. (eds.) GandALF. EPTCS, vol. 161, pp. 60–73 (2014)

10. Fearnley, J., Zimmermann, M.: Playing Muller Games in a Hurry. Internat. J.
Found. Comput. Sci. 23, 649–668 (2012), special Issue GandALF 2010.

11. Fijalkow, N., Zimmermann, M.: Parity and Streett Games with Costs. LMCS 10(2)
(2014)

12. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods in System Design 34(2), 83–103 (2009)

13. Martin, D.A.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
14. McNaughton, R.: Playing infinite games in finite time. In: Salomaa, A., Wood,

D., Yu, S. (eds.) A Half-Century of Automata Theory. pp. 73–91. World Scientific
(2000)

15. Neider, D., Rabinovich, R., Zimmermann, M.: Down the Borel hierarchy: Solv-
ing Muller games via safety games. TCS 560(3), 219 – 234 (2014), special Issue
GandALF 2012

16. Nerode, A., Remmel, J.B., Yakhnis, A.: McNaughton games and extracting strate-
gies for concurrent programs. Ann. Pure Appl. Logic 78(1-3), 203–242 (1996)

17. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., Raskin,
J.F.: The complexity of multi-mean-payoff and multi-energy games. Inf. and Comp.
241, 177 – 196 (2015)

18. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of finite-state con-
trollers for request-response specifications. In: Ibarra, O.H., Dang, Z. (eds.) CIAA.
LNCS, vol. 2759, pp. 11–22. Springer (2003)

19. Weinert, A., Zimmermann, M.: Easy to Win, Hard to Master: Optimal Strategies
in Parity Games with Costs. In: Talbot, J.M., Regnier, L. (eds.) CSL ’16. LIPIcs,
vol. 62, pp. 31:1–31:17 (2016)

20. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. TCS
158(1-2), 343–359 (1996)

	Quantitative Reductions and Vertex-Ranked Infinite Games

