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Abstract. The winning condition of a parity game with costs requires an arbitrary, but
fixed bound on the cost incurred between occurrences of odd colors and the next occurrence
of a larger even one. Such games quantitatively extend parity games while retaining most
of their attractive properties, i.e, determining the winner is in NP and co-NP and one
player has positional winning strategies.

We show that the characteristics of parity games with costs are vastly different when
asking for strategies realizing the minimal such bound: The solution problem becomes
PSPACE-complete and exponential memory is both necessary in general and always suf-
ficient. Thus, solving and playing parity games with costs optimally is harder than just
winning them. Moreover, we show that the tradeoff between the memory size and the
realized bound is gradual in general. All these results hold true for both a unary and
binary encoding of costs.

Moreover, we investigate Streett games with costs. Here, playing optimally is as hard
as winning, both in terms of complexity and memory.

1. Introduction

Recently, the focus of research into infinite games for the synthesis of reactive systems
moved from studying qualitative winning conditions to quantitative ones. This paradigm
shift entails novel research questions, as quantitative conditions induce a (partial) ordering
of winning strategies. In particular, there is a notion of semantic optimality for strategies
which does not appear in the qualitative setting. Thus, in the quantitative setting, one
can ask whether computing optimal strategies is harder than computing arbitrary ones,
whether optimal strategies are necessarily larger than arbitrary ones, and whether there
are tradeoffs between different quality measures for strategies, e.g., between the size of the
strategy and its semantic quality (in terms of satisfaction of the winning condition).
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As an introductory example consider the classical (max)-parity condition, which is
defined for an infinite sequence drawn from a finite subset of the natural numbers, so-called
colors. The parity condition is satisfied if almost all occurrences of an odd color are answered
by a later occurrence of a larger even color, e.g., the sequence

π = 1 0 2 1 0 0 2 1 0 0 0 2 1 0 0 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 2 · · ·
satisfies the parity condition, as every 1 is eventually answered by a 2.

The finitary parity condition [CHH09] is obtained by additionally requiring the existence
of a bound b such that almost every odd color is answered within at most b steps, i.e., π
does not satisfy the finitary parity condition, as the length of the zero-blocks is unbounded.
Thus, solving a finitary parity game is a boundedness problem: In order to satisfy the
condition, an arbitrary, but fixed bound has to be met. In particular, winning strategies
for finitary parity games are naturally ordered by the minimal bound they realize along all
consistent plays. Thus, finitary parity games induce an optimization problem: Compute an
optimal winning strategy, i.e., one that guarantees the smallest possible bound.

Other examples for such quantitative winning conditions include mean payoff [EM79,
ZP95] and energy [BFL+08, CdAHS03] conditions and their combinations and extensions,
request-response conditions [HTWZ15, Zim09], parity with costs [FZ14b], and parameter-
ized extensions of Linear Temporal Logic (LTL) [AETP01, FZ14a, KPV09, Zim13, Zim15].
Often, these conditions are obtained by interpreting a classical qualitative winning condition
quantitatively, as exemplified by the finitary parity condition introduced above.

Often, the best algorithms for solving such boundedness conditions are as fast as the
best ones for their respective qualitative variant, while the fastest algorithms for the op-
timization problem are worse. For example, solving games with winning conditions in
Prompt-LTL, a quantitative variant of LTL, is 2ExpTime-complete [KPV09] (i.e., as hard
as solving classical LTL games [PR89]), while computing optimal strategies is only known
to be in 3ExpTime [Zim13]. The same is true for the bounds on the size of winning strate-
gies, which jump from tight doubly-exponential bounds to triply-exponential upper bounds.
The situation is similar for other winning conditions as well, e.g., request-response condi-
tions [HTWZ15]. These examples all have in common that there are no known lower bounds
on the complexity and the memory requirements in the optimization variant, except for the
trivial ones for the qualitative case. A notable exception are finitary parity games, which
are solvable in polynomial time [CHH09] and thus simpler than parity games (according to
the state-of-the-art).

In this work, we study optimal strategies in parity games with costs, a generalization
of finitary parity games. In this setting, we are able to show that computing optimal
strategies is indeed harder than computing arbitrary strategies, and that optimal strategies
have exponentially larger memory requirements in general. A parity game with costs is
played in a finite directed graph whose vertices are partitioned into those of Player 0 and
those of Player 1. Starting at an initial vertex, the players move a token through the graph:
If it is placed at a vertex of Player i, then this player has to move it to some successor. Thus,
after ω rounds, the players have produced an infinite path through the graph, a so-called
play. The vertices of the graph are colored by natural numbers and the edges are labeled
by (non-negative) costs. These two labelings induce the parity condition with costs: There
has to be a bound b such that almost all odd colors are followed by a larger even color such
that the cost incurred between these two positions is at most b. Thus, the sequence π from
above satisfies the parity condition with costs, if the cost of the zero-blocks is bounded.
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Note that the finitary parity condition is the special case where every edge has cost one and
the parity condition is the special case where every edge has cost zero.

Thus, to win a parity game with costs, Player 0 has to bound the costs between requests
and their responses along all plays. If Player 0 has any such strategy, then she has a
positional strategy [FZ14b], i.e., a strategy that determines the next move based only on
the vertex the token is currently at, oblivious to the history of the play. Let n denote the
number of vertices of the graph the game is played in and let W denote its largest edge cost.
Then, a positional winning strategy uniformly bounds the costs to some bound b ≤ nW ,
which we refer to as the cost of the strategy. Furthermore, Mogavero et al. showed that
the winner of a parity game with costs can be determined in UP ∩ co-UP [MMS15]. All
previous work on parity games with costs was concerned with the boundedness variant, i.e.,
the problems ask to find some bound, but not necessarily the best one. Here, in contrast,
we study optimal strategies in parity games with costs.

When considering parity games with costs as a boundedness problem, the actual edge
costs can be abstracted away: It is only relevant whether an edge has cost zero or not.
Thus, it suffices to consider only costs 0 and 1 (typically denoted as ε and i). We call this
setting one of abstract costs.

For the optimization variant, abstracting away the actual costs is no longer valid and
encoding larger costs by subdividing them into edges of cost i, i.e., of cost 1, comes at
the price of an exponential blowup in the graph’s size. Thus, we also consider the case of
costs in N, given in binary encoding. Here, the upper bound nW on the cost of an optimal
strategy might be exponential in the size of the game.

Furthermore, we also study Streett conditions, which generalize parity conditions by
relaxing the hierarchical structure of the requests and responses: In a parity condition,
a large even color answers requests for all smaller odd colors. In contrast, in a Streett
condition, any two kinds of responses are potentially independent of each other. It is
known that solving the boundedness problem for finitary Streett games and for Streett
games with costs is ExpTime-complete [FZ14b], which has to be compared to the co-NP-
completeness of solving classical Streett games [Hor05]. Furthermore, finite-state strategies
of exponential size suffice for Player 0 to implement a winning strategy in a Streett game
with costs [FZ14b]. As above, one obtains mnW as upper bound on the cost of an optimal
strategy in a Streett game with costs with n vertices and largest cost W , where m is the
size of a finite-state winning strategy.

1.1. Our Contribution. Our first four results are concerned with the special case of ab-
stract costs, i.e., costs 0 and 1 only; the remaining ones are about games with costs in N.

The first result shows that determining whether Player 0 has a strategy in a parity game
with costs whose cost is smaller than a given bound b is PSpace-complete. Thus, computing
the bound of an optimal strategy is strictly harder than just deciding whether or not some
bound exists (unless PSpace ⊆ UP∩co-UP). The hardness result is shown by a reduction
from QBF and uses the bound b to require Player 0’s strategy to implement a satisfying
Skolem function for the formula, where picking truth values is encoded by requests of odd
colors. The lower bound is complemented by a polynomial space algorithm that is obtained
from an alternating polynomial time Turing machine that simulates a finite-duration variant
of parity games with costs that is won by Player 0 if and only if she can enforce a cost of at
most b in the original game. To obtain the necessary polynomial upper bound on the play
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length we rely on the upper bound n on the optimal bound and on a first-cycle variant of
parity games (cf. [AR14]) tailored to our setting.

Our second result concerns memory requirements of optimal strategies. A corollary of
the correctness of the finite-duration game yields exponential upper bounds: If Player 0 has
a strategy of cost b, then she also has one of cost b and of size (b+ 2)d = 2d log(b+2), where
d is the number of odd colors in the game. A similar result holds true for Player 1 as well:
If he can exceed a given bound b, then he can also do so with a strategy of size n(b+ 2)d.

Furthermore, we show that the exponential upper bounds are asymptotically tight: We
present a family Gd of parity games with costs such that Gd has d odd colors and Player 0
requires strategies of size 2d−1 to play optimally in each Gd. This result is based on using
the bound b to require Player 0 to store which odd colors have an open request and in
which order they were posed. Our result improves a linear bound presented by Chatterjee
and Fijalkow [CF13]. Dually, we present an exponential lower bound on the memory size
necessary for Player 1 to exceed a given bound b.

Moreover, we study the tradeoff between memory size and cost of a strategy witnessed
by the results above: Arbitrary winning strategies are as small as possible, i.e., positional,
but in general have cost n. In contrast, optimal strategies realize a smaller bound, but
might have exponential size. Hence, one can trade cost for memory and vice versa. We
show that this tradeoff is gradual in the games Gd: There are strategies σ1, σ2, . . . , σd such
that 1 = |σ1| < |σ2| < · · · < |σd| = 2d−1 and b1 > b2 > · · · > bd, where bj is the cost of σj .
Furthermore, we show that the strategy σj has minimal size among all strategies of cost bj .
Equivalently, the strategy σj has minimal cost among all strategies whose size is not larger
than σj ’s size.

Both lower bounds we prove and the tradeoff result already hold for the special case
of finitary parity games, which can even be solved in polynomial time [CHH09]. Hence, in
this case, the gap between just winning and playing optimally is even larger.

After the results for the special case of abstract costs (i.e., 0 and 1 only), we consider
the general case of arbitrary non-negative costs given in binary encoding. We show that
determining whether Player 0 has a strategy in a parity game with costs whose cost is
smaller than a given bound b is still PSpace-complete, i.e., having larger costs does not
influence the complexity of the problem. The lower bound on the complexity carries over
from the special case of abstract costs but the proof of the upper bound is affected by this
generalization: The upper bound on the cost of an optimal strategy is now exponential,
which implies that the finite-duration variant has exponentially long plays as well. We
devise a shortcut criterion to skip parts of a play and prove that this yields the desired
alternating polynomial-time algorithm, which places to problem in PSpace.

As before, this reduction also yields exponential upper bounds on the necessary memory
to implement a winning strategy: The memory requirements do not increase asymptotically
when considering arbitrary costs, and they still match the lower bounds.

Finally, we consider quantitative Streett conditions. We show that, given Streett game
with costs and a bound b, determining whether Player 0 has a strategy with cost at most b
is ExpTime-complete. Thus, playing quantitative Streett games optimally is not harder
than just winning them. This is due to the fact that just winning them is already very hard.
Furthermore, we present tight exponential bounds on the memory necessary to implement a
winning strategy for Player 0 in such a game. All lower bounds already hold for the special
case of finitary Streett games while the upper bounds hold for arbitrary costs encoded in
binary.
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1.2. Related Work. Tradeoffs in infinite games have been studied before, e.g., in stochas-
tic and timed games, one can trade memory for randomness, i.e., randomized strategies
are smaller than deterministic ones [CdAH04, CHP08]. A detailed overview of more recent
results in this direction and of tradeoffs in multi-dimensional winning conditions is given in
the thesis of Randour [Ran14]. The nature of these results is quite different from ours.

Lang investigated optimal strategies in the resource reachability problem on pushdown
graphs [Lan14], where there exists a finite number of counters, which may be increased and
reset, but not read during a play. He shows that in order to keep the values of the counters
minimal during the play, exponential memory in the number of counters is both necessary
and sufficient for Player 0. While the author shows the corresponding decision problem
to be decidable, he does not provide a complexity analysis of the problem. Furthermore,
the setting of the problem is quite different from the model considered in this work: He
considers infinite graphs and multiple counters, but only reachability conditions, while we
consider finite graphs and implicit counters tied to the acceptance condition, which is a
general parity condition.

Also, Fijalkow et al. proved the non-existence of a certain tradeoff between size and
quality of strategies in boundedness games [FHKS15], which refuted a conjecture with
important implications for automata theory and logics. Such games are similar to those
considered by Lang in that they are played in potentially infinite arenas and have multiple
counters.

Recently, Bruyére et al. introduced window-parity games [BHR16], another quanti-
tative variant of parity games, and proved tight complexity bounds for the scenario with
multiple colorings of the arena. They were also able to show a tight connection between
window-parity and finitary parity games.

Finally, the winning conditions considered here have also been studied in the setting
of delay games. In such games, Player 0 may delay her moves to obtain a lookahead on
her opponent’s moves, thereby gaining an advantage that allows her to win games she loses
without delay. Now, there are potential tradeoffs between quality, size, and amount of
delay. Most importantly, one can trade delay for quality and vice versa [Zim17] which
allows Player 0 to improve the quality of her strategies by taking advantage of the delay.

1.3. Organization of the Paper. In Section 2, we introduce basic definitions about infi-
nite games; in Section 3, we introduce parity games with costs. First, we study the variant
with abstract costs: we prove the PSpace-completeness result (Section 4), the exponen-
tial bounds on the memory requirements of optimal strategies (Section 5), and the gradual
tradeoff between cost and size of winning strategies (Section 6). Then, we turn our atten-
tion to the setting of integer-valued costs in Section 7 and to Streett games with costs in
Section 8. Finally, we conclude in Section 9 by discussing further research.

2. Preliminaries

We denote the non-negative integers by N and define [n] = {0, 1, . . . , n−1} for every n ≥ 1.
An arena A = (V, V0, V1, E, vI) consists of a finite, directed graph (V,E), a parti-

tion {V0, V1} of V into the positions of Player 0 (drawn as circles) and Player 1 (drawn as
rectangles), and an initial vertex vI ∈ V . The size of A, denoted by |A|, is defined as |V |.

A play in A is an infinite path ρ = v0v1v2 · · · through (V,E) starting in vI . To rule out
finite plays, we require every vertex to be non-terminal. A game G = (A,Win) consists of
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an arena A with vertex set V and a set Win ⊆ V ω of winning plays for Player 0. The set
of winning plays for Player 1 is V ω \Win.

A strategy for Player i is a mapping σ : V ∗Vi → V where (v, σ(wv)) ∈ E for all wv ∈
V ∗Vi. We say that σ is positional if σ(wv) = σ(v) for every wv ∈ V ∗Vi. We often view
positional strategies as a mapping σ : Vi → V . A play v0v1v2 · · · is consistent with a
strategy σ for Player i, if vj+1 = σ(v0 · · · vj) for every j with vj ∈ Vi. A strategy σ for
Player i is a winning strategy for G if every play that is consistent with σ is won by Player i.
If Player i has a winning strategy, then we say she wins G. Solving a game amounts to
determining its winner.

A memory structure M = (M,mI ,Upd) for an arena (V, V0, V1, E, vI) consists of a finite
setM of memory states, an initial memory statemI ∈M , and an update function Upd: M×
E → M . The update function can be extended to finite play prefixes in the usual way:
Upd+(m, v) = m and Upd+(m,wvv′) = Upd(Upd+(m,wv), (v, v′)) for w ∈ V ∗ and (v, v′) ∈
E. A next-move function Nxt: Vi ×M → V for Player i has to satisfy (v,Nxt(v,m)) ∈ E
for all v ∈ Vi and all m ∈ M . It induces a strategy σ for Player i with memory M
via σ(v0 · · · vj) = Nxt(vj ,Upd+(mI , v0 · · · vj)). A strategy is called finite-state if it can be
implemented by a memory structure. We define |M| = |M |. The size of a finite-state
strategy is the size of a smallest memory structure implementing it.

An arena A = (V, V0, V1, E, vI) and a memory structure M = (M,mI ,Upd) for A
induce the expanded arena A ×M = (V ×M,V0 ×M,V1 ×M,E′, (vI ,mI)) where E′ is
defined via ((v,m), (v′,m′)) ∈ E′ if and only if (v, v′) ∈ E and Upd(m, (v, v′)) = m′. Every
play ρ = v0v1v2 · · · in A has a unique extended play ext(ρ) = (v0,m0)(v1,m1)(v2,m2) · · · in
A×M defined by m0 = mI and mj+1 = Upd(mj , (vj , vj+1)), i.e., mj = Upd+(mI , v0 · · · vj).
The extended play of a finite play prefix in A is defined similarly.

3. Parity Games with Costs

In this section, we introduce the parity condition with costs [FZ14b]. Fix an arena A =
(V, V0, V1, E, vI). A cost function for A is an edge-labeling Cst : E → {ε, i}.1 Edges la-
beled with i are called increment-edges while edges labeled with ε are called ε-edges. We
extend the edge-labeling to a cost function over plays obtained by counting the number of
increment-edges traversed during the play, i.e., Cst(ρ) ∈ N∪{∞} for any play ρ. The cost of
a finite play infix is defined analogously. Also, fix a coloring Ω: V → N of A’s vertices. The
classical parity condition requires almost all occurrences of odd colors to be answered by a
later occurrence of a larger even color. Hence, let Ans(c) = {c′ ∈ N | c′ ≥ c and c′ is even}
be the set of colors that answer a request of color c.

Let ρ = v0v1v2 · · · be a play. We define the cost-of-response at position j ∈ N of ρ by

Cor(ρ, j) = min{Cst(vj · · · vj′) | j′ ≥ j and Ω(vj′) ∈ Ans(Ω(vj))} ,
where we use min ∅ = ∞, i.e., Cor(ρ, j) is the cost of the infix of ρ from position j to its
first answer, and ∞ if there is no answer.

We say that a request at position j is answered with cost b, if Cor(ρ, j) = b. Conse-
quently, a request with an even color is answered with cost zero. The cost-of-response of
an unanswered request is infinite, even if it only incurs finite cost during the remainder of
the play, i.e., if there are only finitely many increment-edges succeeding the request.

1Note that using the abstract costs ε and i essentially entails a unary encoding of costs. We discuss the
case of a binary encoding of arbitrary costs in Section 7.
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Figure 1: Two parity games with costs. Player 1 only wins the left game.

The parity condition with costs is defined as

CostParity(Ω,Cst) = {ρ ∈ V ω | lim supj→∞Cor(ρ, j) <∞} ,
i.e., ρ satisfies the condition, if there exists a bound b ∈ N such that all but finitely many
requests are answered with cost less than b. In particular, only finitely many requests may
be unanswered, even with finite cost. Note that the bound b may depend on the play ρ.

A game G = (A,CostParity(Ω,Cst)) is called a parity game with costs and its size is
defined to be |A|. If Cst assigns ε to every edge, then CostParity(Ω,Cst) is a classical
(max-) parity condition, denoted by Parity(Ω). Dually, if Cst assigns i to every edge,
then CostParity(Ω,Cst) is equal to the finitary parity condition over Ω, as introduced by
Chatterjee et al. [CHH09] and denoted by FinParity(Ω). In these cases, we refer to G as a
parity or a finitary parity game, respectively.

As most of our examples are finitary parity games, we omit the edge-labeling when
drawing them for the sake of readability. For the same reason, we sometimes use non-
negative integer costs on the edges of finitary parity games. Such games can be transformed
into finitary parity games as defined above by subdividing these edges and coloring the newly
added vertices with color 0. In all cases in this work, this only incurs a polynomial blowup.

Player 1 has two ways of winning a parity game with costs: Either he violates the
classical parity condition, or he delays answers to requests arbitrarily. Consider the two
parity games with costs shown in Figure 1. In the game on the left-hand side, Player 1
has a winning strategy, by taking the self-loop of the middle vertex j times upon the j-th
visit to it via the increment-edge from the leftmost vertex. Thus, he delays answers to
the request for 1 arbitrarily and wins by the second condition. In the game on the right-
hand side, however, Player 1 does not have a winning strategy. If he eventually remains in
the vertex labeled with 0, then there are only finitely many requests, only one of which is
unanswered. Thus, the cost of the play is 0, i.e., it is won by Player 0. If he, on the other
hand, always leaves the middle vertex eventually, then each request is answered with cost 2,
hence Player 0 wins as well.

Theorem 3.1.

(1) Parity games can be solved in quasi-polynomial time and the problem is in UP ∩
co-UP. The winner has a positional winning strategy [CJK+17, Jur98, EJ91,
Mos91].

(2) Solving finitary parity games is in PTime. If Player 0 wins, then she has a posi-
tional winning strategy, but Player 1 has in general no finite-state winning strat-
egy [CHH09].

(3) Parity games with costs can be solved in quasi-polynomial time and the problem is
in UP ∩ co-UP. If Player 0 wins, then she has a positional winning strategy, but
Player 1 has in general no finite-state winning strategy [MMS15, CJK+17, FZ14b].
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A winning strategy for Player 0 in a parity game with costs does not have to realize
a uniform bound b on the value lim supj→∞Cor(ρ, j) among all plays ρ that are consistent
with σ, but the bound may depend on the play. To capture the cost of a strategy, we first
define the cost of a play ρ as Cst(ρ) = lim supj→∞Cor(ρ, j) and the cost of a strategy σ
as Cst(σ) = supρ Cst(ρ), where the supremum ranges over all plays ρ that are consistent
with σ. A strategy is optimal for G if it has minimal cost among all strategies for G.
Analogously, for a strategy τ for Player 1, we define Cst(τ) = infρ Cst(ρ), where ρ again
ranges over all plays consistent with τ .

A corollary of Theorem 3.1(3) yields an upper bound on the cost of an optimal strategy:
A straightforward pumping argument shows that a positional winning strategy, which always
exists if there exists any winning strategy, realizes a uniform bound b ≤ n for every play,
where n is the number of vertices of the game.

Corollary 3.2. Let G be a parity game with costs with n vertices. If Player 0 wins G, then
she has a strategy σ with Cst(σ) ≤ n, i.e., an optimal strategy has cost at most n.

This bound is tight, as it trivial to construct finitary parity games Gn with n+1 vertices
and a unique play such that Player 0 wins Gn with respect to bound b = n, but not with
respect to any bound b′ < n.

4. The Complexity of Solving Parity Games with Costs Optimally

In this section we study the complexity of determining the cost of an optimal strategy for
a parity game with costs. Recall that solving such games is in UP∩ co-UP (and therefore
unlikely to be NP-complete or co-NP-complete) while solving the special case of finitary
parity games is in PTime. Our main result of this section shows that checking whether
a strategy of cost at most b exists is PSpace-complete, where hardness already holds for
finitary parity games. Therefore, this decision problem is harder than just solving the game
(unless PSpace ⊆ UP ∩ co-UP, respectively PSpace ⊆ PTime).

Theorem 4.1. The following problem is PSpace-complete: “Given a parity game with
costs G and a bound b ∈ N, does Player 0 have a strategy σ for G with Cst(σ) ≤ b?”

Note that we do not specify how b is encoded: We will argue at the beginning of
Section 4.1 that the problem is trivial for bounds b > n, i.e., the complexity of the problem
is independent of the encoding of b.

The proof of the theorem is split into two lemmas, Lemma 4.6 showing membership
and Lemma 4.7 showing hardness, which are presented in Section 4.1 and Section 4.2,
respectively.

4.1. Solving Parity Games with Costs Optimally is in Polynomial Space. The
remainder of this section is dedicated to showing that parity games with costs with respect
to a given bound can be solved in polynomial space. To this end, we fix a parity game with
costs G = (A,CostParity(Ω,Cst)) with A = (V, V0, V1, E, vI) and a bound b. Let n = |V |.
First, let us remark that we can assume w.l.o.g. b < n: If b ≥ n, then, due to Corollary 3.2,
we just have to check whether Player 0 wins G. This is possible in polynomial space due to
Theorem 3.1(3).

To obtain a polynomial space algorithm, we first turn the quantitative game G into
a qualitative parity game G′ in which the cost of open requests is explicitly tracked up
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to the bound b. To this end, we use functions r mapping odd colors to {⊥} ∪ [b + 1] =
{⊥}∪{0, . . . , b}, where ⊥ denotes that no open request of this color is pending. Additionally,
whenever the bound b is exceeded for some request, all open requests are reset and a so-
called overflow counter is increased, up to value n. This accounts for a bounded number
of unanswered requests, which are allowed by the parity condition with costs. Intuitively,
Player 1 wins G′ if he either exceeds the upper bound b at least n times, or if he enforces an
infinite play of finite cost with infinitely many unanswered requests. If he wins by the former
condition, then he can also enforce infinitely many excesses of b via a pumping argument.
The latter condition accounts for plays in which Player 1 wins without violating the bound b
repeatedly, but by violating the classical parity condition. We show that Player 0 has a
strategy σ in G with Cst(σ) ≤ b if and only if she wins G′ from its initial vertex.

The resulting game G′ is of exponential size in the number of odd colors d and can
therefore in general not be solved in polynomial space in n. Thus, in a second step, we
construct a finite-duration variant G′f of G′, which is played on the same arena as G′, but
the winner of a play is determined after a polynomial number of moves. We show that
Player 0 wins G′ if and only if she wins G′f . To conclude, we show how to simulate G′f on the
fly on an alternating Turing machine in polynomial time in n, which yields a polynomial
space algorithm by removing the alternation [CKS81].

We begin by defining G′. Let R = ({⊥} ∪ [b + 1])D be the set of request functions,
where D is the set of odd colors occurring in G. Here, r(c) = ⊥ denotes that there is no open
request for the color c, while r(c) 6= ⊥ encodes that the oldest open request of c has incurred
cost r(c). Using these functions, we define the memory structureM = ([n+1]×R,mI ,Upd),
where the first component [n + 1] implements the previously mentioned overflow counter.
It suffices to bound this counter by n, since, as we will show, if Player 1 can enforce n
overflows in G, then he can also enforce infinitely many by a pumping argument. If this
counter reaches n, we say that it is saturated.

The initial memory state mI is the pair (0, rvI ), where, for an arbitrary v ∈ V , rv is the
function mapping all odd colors to ⊥, if Ω(v) is even. If Ω(v) is odd, however, rv maps Ω(v)
to 0, and all other odd colors to ⊥. The update function Upd(m, e) is defined such that
traversing an edge e = (v, v′) updates the memory state (o, r) to the memory state (o′, r′)
by performing the following steps in order:

• If e is an increment-edge, then for each c with r(c) 6= ⊥, set r′(c) = r(c) + 1. For
all other c, set r′(c) = r(c) = ⊥. If e is an ε-edge, however, then set r′(c) = r(c) for
all c.
• Now, if there exists a color c such that r′(c) > b, then set r′(c) = ⊥ for all c and set
o′ to the minimum of o+ 1 and n. Otherwise, set o′ to o.
• If Ω(v′) is even, set r(c′) to ⊥ for every c′ ≤ Ω(v′).
• If Ω(v′) is odd, then set r′(Ω(v′)) to the maximum of the previous value of r′(Ω(v′))

and 0, where max{⊥, 0} = 0.

The resulting o′ is at most n and the resulting function r′ is an element of R. We show an
example of the evolution of the memory states on a play prefix in Figure 2. In particular,
the move from the fifth vertex to the sixth one causes an overflow that resets all requests,
but also increments the overflow counter.

We define the parity game G′ = (A×M,Parity(Ω′)), with Ω′(v, o, r) = Ω(v) for o < n
and Ω′(v, n, r) = 1. Note that every play that encounters a vertex of the form (v, n, r) at
some point, for some v ∈ V and some r ∈ R, is winning for Player 1, since these vertices
form a winning sink component for him. Intuitively, reaching a vertex of this form means
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3 0 1 1 2 4 1 0 . . .ε i i ε i i i

o 0 0 0 0 0 1 1 1 . . .

r(1) ⊥ ⊥ 0 1 ⊥ ⊥ 0 1 . . .

r(3) 0 0 1 2 2 ⊥ ⊥ ⊥ . . .

Figure 2: Example of the evolution of the request-functions during a play for b = 2.

that Player 1 is able to often open n requests that are not answered with cost at most b. We
show that this implies him being able to open infinitely many such requests. However, there
is another way of winning the original parity game with costs G for him, i.e., by violating
the underlying parity condition of G. This is possible even if no request incurs a cost greater
than b. Hence, G′ is a parity game.

Let A′ = A ×M = (V ′, V ′0 , V
′
1 , E

′, v′I), in particular V ′ = V ×M and V ′i = Vi ×M .
Even though G′ has no cost function, we say that an edge ((v,m), (v′,m′)) of G′ is an
increment-edge if (v, v′) is an increment-edge in G, otherwise we call it an ε-edge.

It suffices to solve G′ to determine whether Player 0 can bound the cost in G by b.

Lemma 4.2. Player 0 has a strategy σ in G with Cst(σ) ≤ b if and only if Player 0 wins G′.

Proof. We first introduce some notation. Let (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · be a play
or a play prefix in A′. An overflow position is a j such that either j = 0 or oj = oj−1 + 1.
Note that we have rj = rvj for every overflow position, i.e., the request function is reset at
each such position.

For the direction from right to left, assume that Player 0 wins G′ and let σ′ : V ′0 → V ′

be a positional winning strategy for her from v′I in G′. We define the finite-state strategy σ
for Player 0 in G using the memory structure M and the next-move function Nxt with
Nxt(v,m) = v′, if σ′(v,m) = (v′,m′) for some m′. Let ρ = v0v1v2 · · · be a play that
is consistent with σ. A straightforward induction shows that the unique extended play
ext(ρ) = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · in G′ is consistent with σ′ and therefore winning
for Player 0. This in particular implies oj < n for all j ∈ N, as the vertices (v, n, r) form a
rejecting sink component.

First, assume that ρ traverses infinitely many increment-edges. The overflow-counter
in ext(ρ) stabilizes at some value less than n at some point, i.e., there is a position j such
that oj′ = oj < n for every j′ > j. We claim Cor(ρ, j′) ≤ b for every j′ > j, which finishes
this direction of the proof. Assume towards a contradiction that a request at some position
after j of ρ is unanswered for b+ 1 increment-edges. During every traversal of one of these
increment-edges, its associated counter in ext(ρ) is increased by one and not reset until
b+ 1 increment-edges are traversed, which implies encountering an overflow position. This
contradicts the choice of the position j. Thus, if ρ traverses infinitely many increment-edges,
then almost every request is answered with cost at most b, i.e., Cst(ρ) ≤ b.

Now, consider the case where ρ contains only finitely many increment-edges. Such a
play satisfies the parity condition with costs if and only if it satisfies the parity condition.
Thus, it suffices to note that ρ and ext(ρ) coincide on their color sequences, due to oj < n
for all j ∈ N, and that ext(ρ) satisfies the parity condition, as it is winning for Player 0.

For the other direction, we prove the contrapositive. Assume that Player 0 does not
win G′. Then, due to determinacy of parity games, Player 1 wins G′, say using the positional
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strategy τ ′ : V ′1 → V ′. This strategy is only useful as long as the overflow counter is not
yet saturated, as a play is trivially winning for Player 1 as soon as the sink component
is reached. Thus, whenever the overflow counter is increased, we reset it to the smallest
possible value for which τ ′ is still able to enforce a winning play for Player 1.

We introduce the set R that contains all vertices (v, o, r) that are visited by some
play that is consistent with τ ′. Then, given a vertex v, let ov = min{o | (v, o, rv) ∈ R}
with min ∅ = n. Note that we have ovI = 0 and that the strategy τ ′ is winning from (v, ov, rv)
in G′ for all v ∈ V . Now we define a new memory structure M′ = (M ′,m′I ,Upd′) with
M ′ = M = [n+ 1]×R, m′I = mI = (0, rvI ), and

Upd′((o, r), (v, v′)) =

{
(o, r′) if Upd((o, r), (v, v′)) = (o, r′)

(ov′ , r
′) if Upd((o, r), (v, v′)) = (o+ 1, r′)

.

Note that we have r′ = rv′ in the second case. Now, let τ be the finite-state strategy
implemented byM′ and the next-move function Nxt given by Nxt(v,m) = v′, if τ ′(v,m) =
(v′,m′) for some m′ ∈M .

Let ρ = v0v1v2 · · · be some play in G that is consistent with τ and, moreover, let
ρ′ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · be the extended play of ρ with respect to M′. We
say that j is a reset position if j = 0 or if Upd((oj−1, rj−1), (vj−1, vj)) = (oj−1 + 1, rj), i.e.,
the second case in the definition of Upd′ is applied. Note that ρ′ is not necessarily a play
in G′, but every maximal infix of ρ′ between two reset positions is a play infix in that game
that is consistent with τ ′. Furthermore, at every reset position, instead of incrementing the
overflow counter, we set it to the minimal value ov. As a reset position in ρ′ is only reached
when incurring an overflow, for every reset position but the first one there exists at least
one request in ρ that is open for at least b+ 1 increment-edges.

We now prove that the play ρ in G is winning for Player 1. Recall that the play
ρ′ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · is the extension of ρ with respect to M′. In order
to show ρ to be winning, we proceed in two steps. First, we show that we have oj < n for
all j, i.e., the strategy τ always uses meaningful moves of τ ′ for its choice of move. This
allows us to argue that τ is indeed winning for Player 1.

First, note that even though ρ′ is not a play in G′, every vertex (vj , oj , rj) of ρ′ is in R.
We show this claim by induction over j. For j = 0, we obtain (v0, o0, r0) = v′I ∈ R. For
j > 0, we obtain v′j−1 = (vj−1, oj−1, rj−1) ∈ R by induction hypothesis. Hence, let π be

a play prefix ending in v′j−1 that is consistent with τ ′. If v′j−1 ∈ V ′0 , then π · (vj , oj , rj)
is consistent with τ ′. Otherwise, i.e., if v′j−1 ∈ V ′1 , then we obtain τ(π) = (vj , o, rj) for

some o ∈ [n + 1]. In case o = oj , (vj , oj , rj) ∈ R follows directly. If o 6= oj , however, then
oj = ovj and rj = rvj , i.e., (vj , oj , rj) ∈ R by definition of ovj .

Next, we show oj+1 ≤ oj + 1 for all j ∈ N. Assume we have oj+1 > oj for some j.
As argued above, the vertex (vj , oj , rj) is in R. As oj 6= oj+1, there is an edge from
(vj , oj , rj) to (vj+1, oj + 1, rj+1) in A′, where rj+1 = rvj+1 . By construction of τ , we
obtain (vj+1, oj+1, rj+1) ∈ R as argued above. Hence, we indeed have oj+1 = ovj+1 ≤ oj+1.

Now, we argue oj < n for all j ∈ N by proving the following property by induction
over j:

If oj = k, then for every k′ ≤ k there is a reset position jk′ ≤ j with ojk′ = k′.

Let us first argue that this indeed implies oj < n. Towards a contradiction, assume oj = n.
Then, there are n + 1 reset positions, one for each value k in the range 0 ≤ k ≤ n for the
overflow counter. Thus, two such positions j′, j′′ share the same vertex vj′ = vj′′ , which
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implies that they also share the same overflow counter value oj′ = ovj′ = ovj′′ = oj′′ . This

yields the desired contradiction to oj′ and oj′′ being distinct.
For the induction start, we have o0 = 0 and pick j0 = 0, which is a reset position.

Now, let j > 0 and oj = k. If k ≤ oj−1, then the induction hypothesis yields the necessary
positions. Hence, assume we have k > oj−1, which implies k = oj−1 + 1 as shown above.
Then, j is a reset position and we can define jk = j and obtain the remaining jk′ for k′ < k
from the induction hypothesis.

It remains to show that ρ is indeed winning for Player 1. First assume that the overflow
counter of ρ′ stabilizes, i.e., there exists some j ∈ N such that oj′ = oj for all j′ > j. Then,
there exists a suffix of ρ′ that is consistent with τ ′, which therefore violates the parity
condition. Hence, it suffices to note that the colors of ρ′ and ρ coincide, i.e., ρ violates the
parity condition and thus also the parity condition with costs with respect to any bound.

Now assume that the overflow counter of ρ′ does not stabilize. Then, there are infinitely
many reset positions in ρ′. Between any two adjacent such positions, by construction, there
exists a request that remains unanswered for at least b+ 1 steps in ρ. Hence, ρ violates the
parity condition with costs with respect to bound b and is winning for Player 1.

As the parity game G′ is of exponential size and can therefore not be constructed and
solved in polynomial space in |G|, we now construct a finite-duration variant G′f of G′. One
such variant is obtained by playing the parity game up to the first vertex repetition and
declaring the winner according to the maximal color on the induced cycle [AR14]. However,
one can show that such a play in G′ is still of exponential length in the worst case. In the
following, we exploit the structure of the arena to proclaim a winner after a polynomial
number of moves. In particular, we define a preorder on the memory elements and stop a
play as soon as a pseudo-cycle is reached, i.e., an infix whose projection to V is a cycle in
A and whose memory states at the start and at the end are in the order relation.

We first introduce the preorder on memory states. To this end, note that not all open
requests are “relevant”. In fact, a small request that is opened while a larger one is already
open is irrelevant. Answering the larger request is more urgent, as it has already incurred
at least as much cost as the newly opened request and answering the larger one answers the
smaller one as well. Following this intuition, we define the relevant requests of a request
function r as follows: c is relevant in r if and only if r(c) 6= ⊥ and if there does not exist
a color c′ > c such that r(c′) ≥ r(c). Then, for each open request c in r, there exists
some c′ ≥ c such that the request for c′ is relevant and r(c′) ≥ r(c). Also, the largest open
request and the one with the highest cost are always relevant. We denote the set of relevant
requests of r by RelReq(r).

Using the relevant requests, we define a preorder v on request functions: For two
request functions r and r′, we say that r′ dominates r, if for each color c that is relevant
in r, there exists a relevant request c′ in r′ that is “more urgent” than that for color c.
Formally, we write r v r′ if and only if for each c that is relevant in r, there exists a c′ with
c ≤ c′ that is relevant in r′ with r(c) ≤ r′(c′). The relation v is reflexive and transitive.
Moreover, if r v r′ and r w r′ both hold true, we write r ≈ r′. Finally, we have that r ≈ r′
implies RelReq(r) = RelReq(r′) and r(c) = r′(c) for all c ∈ RelReq(r).

We extend the preorder v to memory elements. Since the overflow counter is non-
decreasing and every one of its increments brings a play closer towards the winning sink
vertices for Player 1, we value this component of the memory state more strongly. Following
this intuition, we say that the memory state (o, r) is dominated by the memory state (o′, r′),
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written (o, r) v (o′, r′), if either o < o′, or if both o = o′ and r v r′ hold true. Similarly,
we extend the notation of ≈ such that (o, r) ≈ (o′, r′), if and only if both (o, r) v (o′, r′)
and (o, r) w (o′, r′) hold true.

The preorder on memory elements is preserved under concatenation.

Lemma 4.3. Let (v, o1, r1), (v, o2, r2) be vertices in G′, let (v, v′) ∈ E, and, for j ∈ {1, 2},
let Upd((oj , rj), (v, v

′)) = (o′j , r
′
j). If (o1, r1) v (o2, r2) and o2 < n, then (o′1, r

′
1) v (o′2, r

′
2).

Proof. First assume o1 < o2. Due to the construction of G′, this implies o′1 ≤ o′2. If o′1 < o′2,
the given statement holds true. If o′1 = o′2, however, then r′1 = rv′ and thus (o′1, r

′
1) v (o′2, r

′
2),

since for every (v, o, r) with incoming edges in A′, we have r w rv. Thus, assume o1 = o2
and r1 v r2 for the remainder of this proof.

First, assume that o′1 = o1 + 1 We show the following claim: If the move to v′ causes an
overflow when starting from (v, o1, r1), then the same move causes an overflow when starting
from (v, o2, r2). This then implies r′1 = r′2 = rv′ and hence, (o′1, r

′
1) v (o′2, r

′
2). Formally,

we claim that if o′1 = o1 + 1, then o′2 = o2 + 1. It remains to show o′2 = o2 + 1. Since the
move from v to v′ causes an overflow when starting in (v, o1, r1), we have Cst(v, v′) = i.
Let c1 be some color that causes the overflow in r1, i.e., c1 ∈ {c | r1(c) = b}. Since r2 w r1,
there exists a color c2 ≥ c1 with r2(c2) ≥ r1(c1). Moreover, since the range of r2 is upwards
bounded by b, this implies r2(c2) = b. Hence, the move from v to v′ also causes an overflow
in r2, which implies o′2 = o2 + 1. This completes the proof in the case o′1 = o1 + 1.

If, however, o′1 = o1, we again distinguish two cases: If o′2 = o2 + 1, then o′1 < o′2 and
hence, (o′1, r

′
1) v (o′2, r

′
2). On the other hand, if o′2 = o2, then let c1 be relevant in r′1. We

show that there exists a color c2 ≥ c1 with r′2(c2) ≥ r′1(c1). Should c2 be non-relevant, then
there exists a larger one in r′2 that dominates c2.

If a request for c1 was already open in r1, then let c2 ≥ c1 with r2(c2) ≥ r1(c1). Such a
color c2 exists due to r2 w r1. Since the request for c1 was not answered during the move
to v′, and since o2 = o′2 < n, neither was the request for c2 during the same move. Hence,
we have r′2(c2) ≥ r′1(c1). If, however, a request for c1 was not already open in r1, then the
request for c1 must have been opened by moving to v′, i.e., Ω(v′) = c1. Thus, we directly
obtain r′1(c1) = 0 and r′2(c1) ≥ 0. Picking c2 = c1 concludes the proof in this case.

We now define the winning condition in the finite game G′f . To this end, let π =

(v0, o0, r0) · · · (vj , oj , rj) be a play prefix in G′ and let π′ = (vk, ok, rk) · · · (vk′ , ok′ , rk′) be an
infix of π. We say π′ is a dominating cycle2 if vk = vk′ , ok = ok′ < n, and either

• the maximal color occurring on π′ is even and rk w rk′ , or
• the maximal color occurring on π′ is odd and rk v rk′ .

We call the former and latter type of dominating cycles even and odd, respectively. More-
over, we say that a play prefix π = (v0, o0, r0) · · · (vj , oj , rj) is settled if either oj = n, or if π
contains a dominating cycle.3 Fix ` = (n+ 1)6.

Lemma 4.4. Let π be a play prefix of G′. If |π| > `, then π is settled.

2Note that a dominating cycle is only a cycle when projected to a play in A.
3This definition differs from the one presented in the conference version [WZ16]. The definition here is

easily amenable to the case of integer-valued cost functions in Section 7, simplifies the proofs of Lemma 4.4
and Lemma 4.5, and fixes a bug in the conference version, which caused plays to be settled too early in favor
of Player 1.
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π . . . . . . . . . . . . . . . ≤ n overflow
positions

π1 . . . . . . . . . ≤ n debt-free
positions

π2 . . . . . . . . . . . . ≤ d request-
adding positions

π3 . . . . . . . . . . . . ≤ d relevance-
reducing positions

π4 . . . . . . . . .i i i iε ε ε ε ε ε ≤ b+ 1
increment edges

≤ n
vertices

≤ n
vertices

≤ n
vertices

Figure 3: Bounding the length of unsettled play prefixes. The relevant special vertices are
marked in yellow.

Proof. Let π = (v0, o0, r0) · · · (vj , oj , rj) be an unsettled play prefix of G′. We show |π| ≤ `,
which implies the given statement. Note that, since π is not settled, it does not contain a
vertex repetition, since such a repetition induces a dominating cycle.

The structure of our argument is sketched in Figure 3: We recall the definition of
overflow positions, define debt-free, request-adding, and relevance-reducing positions, and
show

(1) that there are at most n overflow positions in π,
(2) that there are at most n debt-free positions between any two adjacent overflow

positions,
(3) that there are at most d request-adding positions between any two adjacent debt-free

positions, where d is the number of odd colors,
(4) that there are at most d relevance-reducing positions between any two adjacent

request-adding positions,
(5) that there are at most b + 1 increment-edges between any two adjacent relevance-

reducing positions, and
(6) that there are at most n vertices between two such increment-edges.

Aggregating these bounds then yields the desired result.
Recall that an overflow position of π is a k with k = 0 or with ok = ok−1 + 1. As π

is unsettled and the ok are non-decreasing, π has at most n overflow positions, n − 1 real
increments and the initial position. Hence, by splitting π at the overflow positions we obtain
at most n non-empty infixes of π, each without overflow positions. We say such an infix
has type 1.

Fix a non-empty type 1 infix π1. A debt-free position of π is a k with rk = rvk , i.e.,
a position that has no other costs than those incurred by visiting vk. As all vertices of π1
share the same overflow counter value, there are at most n debt-free positions in π1: n+ 1
such positions would induce a vertex repetition, which we have ruled out above. Hence, by
splitting π1 at the debt-free positions we obtain at most n+ 1 non-empty infixes of π1, each
without debt-free and overflow positions. We say such an infix has type 2.

Fix a non-empty type 2 infix π2. A request-adding position of π is a k with odd Ω(vk)
such that rk−1(c) = ⊥ for all c ≥ Ω(vk). We define d as the number of odd colors assigned
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by Ω and claim that there are at most d request-adding positions in π2. Assume there
are d + 1. Then, two request-adding positions k < k′ share a color, call it c. As k′ is
request-adding, only requests strictly smaller than c are open at position k′ − 1, i.e., c and
all larger requests have to be answered in between k and k′. Hence, there is a debt-free
position between k and k′, which contradicts π2 being of type 2. Hence, by splitting π2 at
the request-adding positions we obtain at most d+ 1 non-empty infixes of π2, each without
request-adding, debt-free, and overflow positions. We say such an infix has type 3.

Fix a non-empty type 3 infix π3. A relevance-reducing position of π is a k such that
RelReq(rk−1) ) RelReq(rk). We show that π3 contains at most d relevance-reducing
positions. To this end, we first argue that there is at least one request that is open through-
out π3. First note that some request must be open at the beginning of π3, as otherwise the
first vertex would be at a debt-free position, which do not occur in π3. Let c∗ be the maximal
open request at the beginning of π3. Due to π3 not containing debt-free nor request-adding
positions, all colors c visited during π4 must satisfy c ≤ c∗. Hence, the request for c∗ re-
mains open throughout π3. We now show that the sets of relevant requests along π3 form
a descending chain in the subset-relation. Assume towards a contradiction that an infix
(v, o, r)(v′, o′, r′) of π3 and a color c exist such that c /∈ RelReq(r), but c ∈ RelReq(r′),
i.e, Ω(v′) = c. Then, c > c∗, i.e., there exists a request-adding position in π3, a contra-
diction. Hence, the sets of relevant requests indeed form a descending chain. As at the
beginning of π3 at most d requests are relevant, there are at most d relevance-reducing posi-
tions. Thus, by removing relevance-reducing positions, we obtain at most d+ 1 non-empty
infixes, each without relevance-reducing, request-adding, debt-free, and overflow positions.
We say such an infix has type 4.

Fix a non-empty type 4 infix π4. We show that π4 contains at most b increment-edges.
As argued above, there exists some color c for which a request is open at the beginning
of π4, which is not answered throughout this infix. Thus, b+ 1 increment-edges in π4 would
lead to an overflow position. However, π4 has no overflow positions by construction. Thus,
there are at most b increment-edges in π4. Hence, by splitting π4 at the increment-edges,
we obtain a decomposition of π4 into at most b + 1 infixes, each without increment-edges
and without relevance-reducing, request-adding, debt-free, and overflow positions. We say
such an infix has type 5.

Fix a non-empty type 5 infix π5. We show that π5 is of length at most n. Assume
towards a contradiction that π5 contains at least n + 1 vertices. Then there exists an
infix π′ = (v, o, r) · · · (v, o, r′) of π5, since π5 does not contain overflow positions. As argued
above, we have RelReq(r) = RelReq(r′). Moreover, as π5 contains no increment-edges,
we furthermore obtain r ≈ r′. Thus, π′ is a dominating cycle, which contradicts π being
unsettled. Hence, π5 is of length at most n.

Aggregating all these bounds yields an upper bound of (n + 1)6 on the length of the
unsettled play prefix π, as we have d ≤ n and b ≤ n.

Using the notion of settled plays, we now define the finite game G′f = (A′,Winf ), in

which both players try to settle the play in their favor. Due to Lemma 4.4, every play in A′
is settled. Thus, let ρ be an infinite play in A′ and let π be the minimal settled prefix
of ρ, which can be settled due to three mutually exclusive criteria. If π is settled due to
containing an even dominating cycle, then ρ is winning for Player 0. Otherwise, i.e., if π is
settled due to saturating the overflow counter or due to containing an odd dominating cycle,
ρ is winning for Player 1. The game G′f is indeed a game of finite duration, as the winner
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is certain after ` moves, due to Lemma 4.4. Hence, G′f is determined [Zer13]. Moreover, in

order to solve G′, it suffices to solve G′f .

Lemma 4.5. Player 0 wins G′ if and only if she wins G′f .

Proof. We first show that Player 0 wins G′ if she wins G′f . Let σ′f be a winning strategy

for Player 0 in G′f . We construct a winning strategy σ′ for Player 0 in G′ by simulating

a play in G′f that is consistent with σ′f . As this strategy is only useful as long as the
simulating play is not settled, we have to keep the simulating play short by removing
settling dominating cycles. We define the simulation h : (V ×M)+ → (V ×M)+ and the
strategy σ′ simultaneously. The function h satisfies the following invariant:

Let π be consistent with σ′ and end in (v, o, r). Then, h(π) is consistent
with σ′f , is unsettled, and ends in (v, o′, r′) with (o′, r′) w (o, r).

Since h(π) is consistent with the winning strategy σ′f for Player 0 and unsettled, this implies

that neither the overflow counter of h(π) nor that of π reaches the value n.
To begin, let h(v′I) = v′I , which satisfies the invariant. Now, assume we have a play

prefix π consistent with σ′ ending in (v, o, r) and let h(π) = (v0, o0, r0) · · · (vj , oj , rj). We
consider two cases, depending on whose turn it is at the last vertex (v, o, r) of π.

If (v, o, r) ∈ V ′1 , Player 1 moves to some successor of (v, o, r) in G′, say (v∗, o∗, r∗).
Furthermore, define (o∗f , r

∗
f ) = Upd((oj , rj), (vj , v

∗)), which is the corresponding memory

update in G′f . If (v, o, r) ∈ V ′0 , let σ′f (h(π)) = (v∗, o∗f , r
∗
f ) in G′f . We mimic the move to

(v∗, o∗f , r
∗
f ) in G′ by defining σ′(π) = (v∗, o∗, r∗) with (o∗, r∗) = Upd((o, r), (v, v∗))). This is

well-defined due to the invariant vj = v.
In both cases, for a given successor v∗ of v in A, we have (o∗f , r

∗
f ) = Upd((oj , rj), (v, v

∗))

and (o∗, r∗) = Upd((o, r), (v, v∗))). It remains to define h(π · (v∗, o∗, r∗)). We distinguish
two cases: If π∗f = h(π) · (v∗, o∗f , r∗f ) is not settled, we pick h(π · (v∗, o∗, r∗)) = π∗f . This
satisfies the invariant due to Lemma 4.3.

Now assume π∗f is settled. Since π∗f is consistent with the winning strategy σ′f for

Player 0, π∗f is settled due to containing an even dominating cycle. Moreover, since h(π)
is not settled, the dominating cycle is a suffix of π∗f . Thus, the cycle starts in a vertex

(vj′ , oj′ , rj′) with vj′ = v∗ and rj′ w r∗f . Removing the settling cycle, we define h(π ·
(v∗, o∗, r∗)) = (v0, o0, r0) · · · (vj′ , oj′ , rj′), which satisfies the invariant due to transitivity
of v.

Now, consider a play ρ consistent with σ′ and let πj be the prefix of length j of ρ. As
argued before, neither the overflow counter of the πj nor that of the h(πj) reaches n. Hence,
the colors of the last vertices of πj and h(πj) coincide for all j.

Towards a contradiction, assume that the maximal color occurring infinitely often
along ρ is odd, call it c. After some finite prefix, c cannot occur on even dominating
cycles in the h(πj) anymore, since each occurrence on such a cycle implies at least one
occurrence of an even higher even color in ρ. Hence, after this prefix, each time a vertex of
color c is visited, say at the end of the prefix πj , a vertex of the same color is appended to
the simulated play h(πj). Moreover, this vertex is never removed from the simulated play,
since only vertices occurring on even dominating cycles are removed from the simulated
play. Hence, the simulated play becomes longer with each visit to a vertex of color c after
a finite prefix. This contradicts the h(πj) being unsettled, as every play of length ` + 1 is
settled due to Lemma 4.4. Thus, the maximal color occurring infinitely often in ρ must be
even, i.e., σ′ is winning for Player 0 in G′.
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For the other direction, we show that Player 1 wins G′ if he wins G′f . Due to determinacy

of G′ and G′f , this suffices to show the result. Let τ ′f be a winning strategy for Player 1

in G′f . Similarly to the previous case, we simulate play prefixes π in G′ by play prefixes h(π)

in G′f and define a simulation function h and a winning strategy τ ′ for Player 1 in G′
simultaneously. Again, we need to make sure that the simulating play prefixes remain short
and unsettled, as long as the overflow counter of the play in G′ is not saturated. We do so
by removing settling dominating cycles from the simulating play prefixes in G′f . Formally,
h satisfies the following invariant:

Let π be consistent with τ ′ and end in (v, o, r) with o < n. Then, h(π) is
consistent with τ ′f , is unsettled, and ends in (v, o′, r′) with (o′, r′) v (o, r).

If o = n, we can stop the simulation and let Player 1 pick arbitrary successor vertices in G′,
since the play has reached the winning sink component for Player 1 in G′.

At the beginning, we pick h(v′I) = v′I , which satisfies the invariant. Now, let π be a
play prefix consistent with τ ′ ending in (v, o, r) and let h(π) be defined. We obtain the next
vertex similarly to the previous case, i.e., as an arbitrary successor of (v, o, r) if (v, o, r) ∈ V ′0 ,
and by applying τ ′f to h(π) if (v, o, r) ∈ V ′1 . In the latter case, we moreover define τ ′ as

simulating the move of τ ′f as previously. In both cases, we obtain v∗ as the first component

of the next vertex in both G′ and G′f . Again, we define (o∗, r∗) and (o∗f , r
∗
f ) as previously.

Let π∗ = π · (v∗, o∗, r∗). It remains to define h(π∗). If o∗ = n, Player 1 has already
won and we can define h(π∗) arbitrarily since the invariant contains an empty premise.
If o∗ < n, however, we define h(π∗) as in the previous case, i.e., as π∗f , if π∗f is not settled,
and by removing the settling odd dominating cycle otherwise. No even dominating cycle
may occur, since π∗f is consistent with τ ′f . This maintains the invariant due to the same
argument as previously.

Now consider a play ρ that is consistent with τ ′. If the overflow counter along ρ reaches
the value n, then ρ is winning for Player 1. Thus, we consider the case where the counter is
always smaller than n. In this case, however, the maximal color seen infinitely often in ρ is
odd, due to the same argument as in the previous case: If it were even, vertices of that color
would be appended to the simulation infinitely often without being removed, contradicting
the simulated play being unsettled. Hence, τ ′ is winning for Player 1 in G′.

The combination of Lemmas 4.2 and 4.5 shows that Player 0 wins G with respect to
the bound b if and only if she wins G′f . Thus it remains to show that we can simulate G′f
on an alternating Turing machine in polynomial time.

Lemma 4.6. The following problem is in PSpace: “Given a parity game with costs G and
a bound b ∈ N, does Player 0 have a strategy σ for G with Cst(σ) ≤ b?”

Proof. Given G and b, we show how to simulate the finite-duration game G′f on an alternating
polynomial time Turing machine using the game semantics of such machines, i.e., two
players construct a single path of a run of the machine. The existential and universal
player take the roles of Player 0 and Player 1, respectively. The Turing machine keeps
track of the complete prefix of the simulated play of G′f . Since every vertex of A ×M
can be represented in polynomial size and since the length of the play is bounded from
above by (n + 1)6 due to Lemma 4.4, the Turing machine can keep track of the history
explicitly and check after each step whether a dominating cycle has occurred in polynomial
time. If the play is settled due to an even dominating cycle, the machine accepts, if it



18 ALEXANDER WEINERT AND MARTIN ZIMMERMANN

is settled otherwise, the machine rejects. Note that this algorithm involves neither the
explicit construction of G′ nor that of G′f . The Turing machine accepts G and b if and only

if Player 0 wins G′f . Due to Lemma 4.4, this machine terminates after polynomially many

steps. Hence, APTime = PSpace [CKS81] completes the proof.

4.2. Playing Parity Games with Costs Optimally is PSPACE-hard. Next, we turn
our attention to proving a matching lower bound on the complexity, which already holds for
finitary parity games, i.e., parity games with costs in which every edge is an increment-edge.
This result is proven by a reduction from the canonical PSpace-hard problem QBF: Given
a quantified boolean formula ϕ = Q1x1Q2x2 . . . Qnxnψ with Qi ∈ {∃,∀} and where ψ is a
boolean formula over the variables x1, x2, . . . , xn, determine whether ϕ evaluates to true.
We assume w.l.o.g. that ψ is in conjunctive normal form such that every conjunct has
exactly three literals, i.e., ψ =

∧m
j=1(`j,1 ∨ `j,2 ∨ `j,3), where every `j,k is either x or x for

some x ∈ {x1, . . . , xn}. We call each `j,k for k ∈ {1, 2, 3} a literal and each conjunct of three
literals a clause. Furthermore, we assume w.l.o.g. that the quantifiers Qj are alternating
with Q1 = Qn = ∃.

This proof uses the standard framework for reducing QBF to infinite two-player games
of polynomial size: Player 0 implements existential choices, i.e., existential quantification
and disjunctions. Dually, Player 1 implements universal quantification and disjunction.
Intuitively, the players pick truth values for the variables in the order as they appear in the
quantifier prefix. Then, Player 1 picks a clause and then Player 0 picks a literal from that
clause. She wins if and only if the literal evaluates to true under the assignment constructed
earlier. This requirement has to be encoded by the winning condition, as the polynomial
state space of the constructed game is insufficient to encode all possible assignments. If this
is the case, then Player 0 wins the game if and only if the formula evaluates to true.

Here, we employ a finitary parity condition with respect to a given bound to achieve
this. To this end, we encode assigning a truth value to a variable by opening requests,
e.g., setting xj to false requests color 4j + 1 and setting it to true requests color 4j + 3.
Crucially, only one color can be requested, but the latter one only after a delay of one step.
Now, Player 0 picking a literal ` answers the corresponding request, e.g., if ` = xj , then the
color 4j + 2 occurs, and if ` = xj , then the color 4j + 4 occurs. Note that 4j + 4 answers
both the request corresponding to setting xj to false and the one setting it to true. But
again, the answer 4j+4 comes only after a delay of one step, which allows to invalidate this
answer in case xj has been assigned false, by requiring a well-chosen bound. This is possible
with a finitary parity condition with respect to a given bound, but neither with a classical
parity condition nor with a finitary parity condition with an existentially quantified bound,
which explains the increase in complexity.

Lemma 4.7. The following problem is PSpace-hard: “Given a finitary parity game G and
a bound b ∈ N, does Player 0 have a strategy σ for G with Cst(σ) ≤ b?”

Proof. Let ϕ = Q1x1Q2x2 . . . Qnxnψ be a quantified boolean formula with ψ =
∧m
j=1Cj

and Cj = (`j,1 ∨ `j,2 ∨ `j,3), where every `j,k is either x or x for some x ∈ {x1, . . . , xn}.
We construct a finitary parity game Gϕ such that Player 0 has a strategy σ for Gϕ with
Cst(σ) = 3n + 5 if and only if the formula ϕ evaluates to true. The arena consists of
three parts: In the first part, which begins with the initial vertex vI , Player 0 and Player 1
determine an assignment for the variables x1 through xn, where Player 0 and Player 1 pick
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Figure 4: The gadget for existentially and universally quantified variables (left, from top to
bottom), and the middle part of the arena (right).

values for the existentially and universally quantified variables, respectively. Each choice of
a truth value by either player incurs a request. In the second part, Player 1 first picks a
clause, after which Player 0 picks a literal from that clause. In the last part, the play then
proceeds without any choice by the players and checks whether or not the chosen literal
was set to true in the first part of the arena. If it was set to true, then the corresponding
request is answered with cost 3n+ 5. Otherwise, that request is answered with cost 3n+ 6.
Furthermore, all other potentially open requests are answered with cost at most 3n+ 5 and
the play returns to the initial vertex vI . Thus, all these gadgets are traversed infinitely
often and the traversals are independent of each other. This idea indeed requires the target
of the reduction to be a finitary parity game instead of a classical one, as Player 0 is able
to answer all requests within at most 3n + 6 steps independently of the truth value of ϕ.
Only the additional requirement for her to do so within at most 3n+ 5 moves forces her to
provide a witness for ϕ being true.

If ϕ evaluates to true, then Player 0 can enforce that all requests are answered with
cost at most 3n+5. Hence, there exists a strategy σ for Player 0 with Cst(σ) ≤ 3n+5. If ϕ
evaluates to false, however, then Player 1 can enforce requests that remain unanswered for
at least 3n + 6 steps. Thus, there exists no strategy σ for Player 0 with Cst(σ) ≤ 3n + 5.
We begin by constructing the arena A together with its coloring Ω.

The left-hand side of Figure 4 shows the gadgets that assign a truth value to vari-
able xj . The vertex aj belongs to Player 0 if xj is existentially quantified, and to Player 1
if xj is universally quantified. The dashed edges indicate the connections to the pre- and
succeeding gadget, respectively. We construct the first part of A out of n copies of this
gadget. Moreover, the vertex a1 has an incoming edge from the end of A, in order to allow
for infinite plays, and is the initial vertex vI of the arena. In the remainder of this proof,
let cxj = 4j + 3 and cxj = 4j + 1 be the colors associated with assigning true or false to xj ,
respectively.

The second part of the arena starts with a vertex ψ of Player 1, from which he picks a
clause by moving to a vertex Cj of Player 0. Each vertex Cj is connected to three gadgets,



20 ALEXANDER WEINERT AND MARTIN ZIMMERMANN

a1

4j

xj?

4j

xj,1!

4j + 4

xj,2!

4(n+ 1)

xj,3!
3j + 1

4j

xj?

4j + 2

xj,1!

4j + 2

xj,2!

4(n+ 1)

xj,3!
3j + 1

Figure 5: Gadgets checking the assignment of true to xj (top) or to xj (bottom).

one for each of the three literals contained in Cj . We show this construction in the right-
hand side of Figure 4. Note that moving from the vertex of color cxj or of color cxj to the
vertex ψ takes 3(n− j) + 1 or 3(n− j) + 2 steps, respectively..

The last part of the arena consists of one gadget for each literal x1, x1 through xn, xn
occurring in ϕ. These gadgets check whether or not the literal picked in the middle part
was actually set to true in the first part of the arena. We show these gadgets in Figure 5.

In these gadgets, neither player has a non-trivial choice. Thus, the play proceeds by first
answering requests for all colors smaller than cxj and cxj . It then either grants the request
for color cxj after 3j + 2 steps, or the request for color cxj after 3j + 1 steps, both counted
from the vertices xj? and xj?, respectively. Since traversing the middle part of the arena
incurs a constant cost of 2, a request for color cxj has incurred a cost of 3(n− j) + 3 at xj?
and xj?, while a request for color cxj has incurred a cost of 3(n − j) + 4 at these vertices.
Hence, the total cost incurred by the request for color cxj is (3(n−j)+3)+(3j+2) = 3n+5
in the gadget corresponding to xj , and (3(n − j) + 3) + (3j + 3) = 3n + 6 in the gadget
corresponding to xj . The dual reasoning holds true for requests for color cxj . Hence, the
bound of 3n+5 is only achieved if the request corresponding to the chosen literal was posed
in the initial part of the arena.

After traversing this last gadget, all requests are answered in the vertex xj,3! or xj,3!
and the play resets to the initial vertex via an edge to a1.

The size of A is polynomial in |ϕ|: The first part consists of one constant-size gadget per
variable, while the second part is of linear size in the number of clauses in ϕ. The final part
contains a gadget of size O(n) for each literal occurring in ϕ. Thus, the size of the arena
is in O(n2 + m). It remains to argue that Player 0 has a strategy σ with Cst(σ) = 3n + 5
if and only if ϕ evaluates to true. For any quantifier-free boolean formula ψ that contains
variables x1 through xn and any partial assignment α : {x1, . . . , xj} → {true, false} we
denote by α(ψ) the formula resulting from replacing the variables in α’s domain with their
respective truth values.

It suffices to argue about finite plays that begin and end in a1, as all plays start in a1,
visit a1 infinitely often, and all requests are answered before moving back to a1. Hence, for
the remainder of this proof, we only consider a finite play infix π starting and ending in a1.

First assume that ϕ evaluates to true. We construct a strategy σ for Player 0 with the
properties described above. Pick j as some index such that xj is existentially quantified
and consider the prefix π′ of π up to, but not including aj . We associate π′ with an
assignment αj−1 : {x1, . . . , xj−1} → {true, false}, where αj−1(xk) = true if π′ visits xk, and
αj−1(xk) = false if π′ visits xk. Due to the structure of the arena, exactly one of these cases
holds true, hence αj−1 is well-defined.
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For j = 1, ∃xj · · ·Qnxnαj−1(ψ) evaluates to true by assumption. Let t ∈ {true, false}
such that ∀xj+1 · · ·Qnxn(αj−1[xj 7→ t])(ψ) evaluates to true as well, where αj−1[xj 7→ t]
denotes the mapping αj−1 augmented by the mapping xj 7→ t. Moreover, we define
σ(· · · aj) = xj if t = true, and σ(· · · aj) = xj otherwise. We proceed inductively, construct-
ing σ(· · · aj) for all existentially quantified variables xj according to the Boolean values that
satisfy the formulas ∃xjQj+1xj+1 . . . Qnxnαj−1(ψ), until we reach the vertex ψ.

At this point, the analysis of the play prefix so far yields an assignment of truth values to
variables αn : {x1, . . . , xn} → {true, false}, such that αn(ψ) evaluates to true. Let α = αn.

At vertex ψ there exist n open requests. As previously argued, if α(xj) = true, then
there is an open request for cxj with cost 3(n− j) + 1. Otherwise, there is an open request
for cxj with cost 3(n − j) + 2. At vertex ψ, Player 1 picks a clause Cj by moving to its
vertex. Since α(ψ) evaluates to true, there exists a k ∈ {1, 2, 3} with α(`j,k) = true. We
pick σ(· · ·Cj) = `j,k?.

If `j,k = xl, then α(xl) = true and hence, there is an open request for cxl . As argued
previously, this request is then answered with cost 3n + 5, since we picked the gadget
corresponding to xl. Similarly, if `j,k = xl, then α(xl) = false and thus there is an open
request for xxl , which is answered with cost 3n + 5 as well. All other open requests are
answered with cost at most 3n+ 5, as argued previously.

After this traversal of the final gadget, all requests are answered, and the play auto-
matically moves to vertex a1 to begin anew. The same reasoning then applies ad infinitum.
Thus, Player 0 is able to answer all requests with a cost of at most 3n+ 5.

Now assume that ϕ evaluates to false. Then, irrespective of the choices made by Player 0
when constructing α in the first part of the arena, Player 1 can pick truth values for the
universally quantified variables such that α(ψ) evaluates to false and then pick a clause Cj
such that α(Cj) evaluates to false. Hence, Player 0 has to pick some `j,k with α(`j,k) = false.
If `j,k = xl, then there is an open request for cxj at xl,1!, which is answered with cost 3n+6.
Similarly, if `j,k = xl, then α(xl) = true, hence there is an open request for cxl , which is
also answered with cost 3n + 6. Thus, in each round Player 1 can open a request that is
only answered with cost at least 3n+ 6, i.e., Player 0 has no strategy with cost 3n+ 5.

5. Memory Requirements of Optimal Strategies in Parity Games with Costs

Next, we study the memory needed by both players to play optimally in parity games
with costs. Recall that Player 0 always has a positional winning strategy if she wins the
game, while Player 1 requires infinite memory. In contrast, our main result of this section
shows that the memory requirements of optimal strategies are exponential for Player 0, i.e.,
playing optimally comes at a price in terms of memory, too.

Standard complexity theoretic assumptions already rule out the existence of small
strategies: If they existed, guessing and verifying such a strategy would contradict PSpace-
completeness of solving finitary parity games with respect to a given bound. However, here
we explicitly present games in which either player requires exponential memory, which we
later use to demonstrate gradual tradeoffs between memory and cost in Section 6. We obtain
our lower bound by a generalization of a construction of Chatterjee and Fijalkow [CF13]
which yielded a linear lower bound.

First, however, let us state a corollary of the construction of the parity game G′ in
the proof of Lemma 4.6, which gives an exponential upper bound on the necessary memory
states for both players. Recall that the memory structure used in that proof has one counter
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Figure 6: The gadgets for Player 1 (left) and Player 0 (right).

with a range of size b+ 2 for each odd color. Furthermore, it has an additional counter that
is bounded by n, which counts the number of times the bound b is exceeded. Using similar
techniques to [FZ14b], it is possible to remove the overflow counter for Player 0: She can
play assuming the largest value for this latter counter that still allows her to win.

Corollary 5.1. Let G be a parity game with costs containing n vertices and d odd colors.

• If Player 0 has a strategy σ for G with Cst(σ) = b, then she also has a strategy σ′

with Cst(σ′) ≤ b and |σ′| = (b+ 2)d.
• If Player 1 has a strategy τ for G with Cst(τ) = b, then he also has a strategy τ ′

with Cst(τ ′) ≥ b and |τ ′| = n(b+ 2)d.

Again, our matching lower bounds already hold for finitary parity games, i.e., parity
games with costs in which all edges are increment-edges. These proofs reuse principles
underlying the PSpace-hardness proof presented in Section 4.2, e.g., having a fixed bound
requires a player, in the worst case, to store all open requests in order to answer them
timely.

We begin by showing the lower bound for Player 0.

Theorem 5.2. For every d ≥ 1, there exists a finitary parity game Gd such that

• Gd has d odd colors and |Gd| ∈ O(d2),
• Player 0 has a strategy σ in Gd with Cst(σ) = d2 + 2d, but
• every strategy σ for Player 0 in Gd with Cst(σ) ≤ d2 + 2d has size at least 2d−1.

Proof. Let d ≥ 1. We construct a finitary parity game Gd that has the stated properties. To
this end, after defining Gd, we construct a strategy with cost d2 + 2d for Player 0 and argue
that it is optimal, followed by the proof that every optimal strategy has at least size 2d−1.

The game Gd is played in rounds. In each round, which starts at the initial vertex
of Gd, Player 1 poses d requests for odd colors in the range 1 through 2d− 1. Subsequently,
Player 0 gives d answers using colors in the range 2 through 2d. If she recalls the choices
made by Player 1 in the first part of the round, she is able to answer each request optimally.
Otherwise, we show that Player 1 can exploit her having not enough memory in order to
force requests to go unanswered for more than d2 + 2d steps. After each round, the play
returns to the initial vertex in order to allow for infinite plays.

The arena A consists of gadgets that each allow exactly one request or response to
be made. Moreover, each path through a gadget has the same length d + 2, including the
edge connecting a gadget to its successor. However, low-priority requests and responses are
made earlier than high-priority ones when traversing such a gadget, due to its structure.
We show both gadgets in Figure 6. The dashed lines denote the edges to the pre- and
succeeding gadget and the edge between the final and the initial gadget. As the owner of
the succeeding vertex depends on the succeeding gadget’s owner, we draw it as a diamond.
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More precisely, the arena A, consists of d repetitions of the gadget for Player 1, followed
by d repetitions of the gadget for Player 0. The initial vertex vI of the arena is the top-left
vertex of the first gadget for Player 1. Moreover, the final gadget of Player 0 has a single
back-edge to the initial vertex. Clearly, A satisfies the first statement of the theorem.

Similarly to the proof of Lemma 4.7, it suffices to consider finite plays infixes. Even
though the requests are not necessarily all answered after each round, we argue that Player 0
can always do so while playing optimally.

We now construct an optimal strategy from vI for Player 0. In order to play optimally,
Player 0 needs to track the requests made by Player 1 in the first part of each round. Instead
of tracking each request precisely, however, it suffices to store the order in which the relevant
requests were posed. In order to use memory efficiently, we do not initialize our memory
structure with the empty sequence, but rather with the memory element encoding that all
requests are relevant. Recall that relevant requests can only be opened by visiting some
larger color than all currently open requests. Hence, we define the set of strictly increasing
odd sequences

IncSeqd = {(c1, . . . , cd) |1 ≤ c1 ≤ · · · ≤ cd = 2d− 1,

cj 6= 2d− 1 implies cj < cj+1, all cj are odd}

and use them as the set of memory states Md = IncSeqd.
4 Note that |Md| = 2d−1, as each

increasing sequence is isomorphic to a subset of {1, 3, 5, . . . , 2d− 3}. In order to obtainM,
we define mI = (1, 3, . . . , 2d − 3, 2d − 1). Moreover, we define the update function Upd as
follows: Upd(m, e) = mI if e leads to the initial vertex of Gd, and as Upd(m, e) = m, if e
leads to some other vertex of even color. If e leads to the (unique) vertex of odd color c
in the j-th gadget of Player 1, however, we differentiate two cases. Let m = (c1, . . . , cd).
If cj ≥ c, then Upd(m, e) = m. Otherwise, we define

Upd(m, e) = (c1, . . . , cj−1, c, c+ 2, c+ 4, . . . , 2d− 1, 2d− 1, . . . , 2d− 1) .

Note that this definition of Upd implies that the memory state is fixed once a partial play
leaves the gadgets of Player 1, remains unchanged throughout the traversal of the gadgets
of Player 0 and is only reset upon moving to the initial vertex of Gd. Finally, we define the
next-move function Nxt such that, if the play leaves the gadgets of Player 1 with memory
state m = (c1, . . . , cd), then Player 0 moves to color cj + 1 in her j-th gadget.

Now consider a play in which Player 0 plays according to this strategy and consider
the request for color c made by Player 1 in his j-th gadget. If the request for color c is
the largest request made by Player 1 so far in the current round,, then Player 0 answers
the j-th request from Player 1 in her j-th gadget. The cost of this request then consists of
three components. First, the play has to leave Player 1’s j-th gadget, incurring a cost of
d− (c+ 1)/2 + 2. Then, the play passes through d− 1 gadgets, incurring a cost of d+ 2 in
each. Finally, moving to color c+ 1 in Player 0’s gadget incurs a cost of (c+ 1)/2. Hence,
answering Player 1’s request incurs a cost of d2 + 2d. If there, however, exists some j′ < j
such that Player 1 has already requested some color c′ > c in his j′-th gadget, then the
request for color c′ will be answered in gadget j′ of Player 0. Hence, Player 0 answers the
request with cost at most (d− 1)(d+ 2) < d2 + 2d.

4This definition differs from the one presented in the conference version [WZ16]. There, the padding to
length d (here with requests for 2d − 1) was kept implicit. We show that an optimal strategy for Player 0
can be implemented with |Md| = 2d−1 many memory states. This invalidates the lower bound of 2d − 2
claimed in the conference version.
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This cost is indeed optimal. Consider the play in which Player 1 always requests 2d−1.
Even if Player 0 answers this request in her first gadget, it still incurs a cost of d2 + 2d.

It remains to show that no optimal strategy of size less than |Md| exists. To this end
we show that Player 1 can exploit a strategy of Player 0 with less than |Md| memory states
and pose requests that will be answered suboptimally.

We associate with each m ∈ Md the partial play req(m) which starts in the initial
vertex, where Player 1 requests the colors occurring in m in order. Clearly, m 6= m′ ∈ Md

implies req(m) 6= req(m′).
Let σ be a strategy for Player 0 that is implemented by (M,mI ,Upd) with |M | < |Md|

and let m ∈ M . Due to the pigeon-hole principle, there exist m′1 6= m′2 ∈ Md, such that
Upd+(m, req(m′1)) = Upd+(m, req(m′2)), i.e., Player 0 answers both sequences of requests
in the same way. Since req(m′1) 6= req(m′2), there exists a gadget of Player 1 in which the
requests posed during req(m′1) and req(m′2) differ. Pick j as the minimal index of such a
gadget and assume that in his j-th gadget, Player 1 requests color c during req(m′1), and
color c′ during req(m′2), where, w.l.o.g., c < c′. If Player 0 has already answered the request
for c′ before her j-th gadget, then some earlier request is not answered optimally when
reacting to req(m′2), as requests are posed in strictly increasing order. Thus, assume that
the request for color c′ has not been answered upon entering Player 0’s j-th gadget. If she
visits some color c′′ < c′ in this gadget, she will only answer c′ in some later gadget, thereby
incurring a cost of more than d(d + 2) = d2 + 2d when reacting to req(m′2). If she visits
some color c′′ ≥ c′, then she does not answer the request for c optimally, thus incurring a
cost of at least d2 + 2d+ (c′ − c)/2 > d2 + 2d when reacting to req(m′1). Hence, one of the
sequences of requests req(m′1) or req(m′2) leads to Player 0 answering at least one request
non-optimally. As such sequences m′1 and m′2 exist for each m ∈M , Player 1 can force such
an “expensive” request in each round. Thus, Cst(σ) > d2 + 2d, i.e., σ is not optimal.

After having shown that Player 0 requires exponential memory to keep the cost of the
play below a given bound, we now show a similar result for Player 1: In general, he also
requires exponential memory to enforce costs above a given bound.

Theorem 5.3. For every d ≥ 1, there exists a finitary parity game Gd such that

• Gd has 2d odd colors and |Gd| ∈ O(d),
• Player 1 has a strategy τ in Gd with Cst(τ) = 5(d− 1) + 7, but
• every strategy τ for Player 1 in Gd with Cst(τ) ≥ 5(d− 1) + 7 has size at least 2d.

Proof. Fix some d ≥ 1. Similarly to the previous proof, we construct an arena A using two
kinds of gadgets, one for each player, each of which is repeated d times. In A, first Player 0
opens d requests and subsequently picks one of these requests to be answered. If Player 1
recalls the requests, then he can delay the answer to any chosen request up to 5(d− 1) + 7
steps. Otherwise, Player 0 can find a sequence of requests that is answered optimally.

We show the gadgets in Figure 7 together with their coloring, and call them G0
j and G1

j

for the j-th gadget of Player 0 and Player 1, respectively. The gadget G0
j contains the

colors 0, 4j − 3, and 4j − 1, while the gadget G1
j contains the colors 0, 4j − 2, and 4j. The

complete arena A is shown in Figure 8. We fix the initial vertex of G0
1 to be the initial

vertex vI of Gd. Clearly, A satisfies the first item of the theorem.
The game is played in rounds. Each such round starts and ends in the initial vertex vI

that answers every request. Thus, it suffices to analyze a single round of the game: In each
round, Player 0 starts by posing d requests. With her j-th request, she may either request
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0 4j − 3 0 0

0 0 4j − 1 0

0 4j − 2 0 0

0 4j − 2 4j

Figure 7: The gadgets G0
j (above) and G1

j (below).
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Figure 8: The arena A of Gd showing necessity of exponential memory for Player 1.

the color 4j − 3 and take three steps before leaving G0
j , or she may request the color 4j − 1

and take a single step before leaving G0
j . After posing d requests, Player 0 then moves to

some G1
j for 1 ≤ j ≤ d while answering all requests for colors c ≤ 4(j − 1). In G1

j , Player 1

answers the request posed in G0
j . After he has done so, all requests are reset and the next

round begins. All requests posed in G0
j′ for j′ < j are answered before entering G1

j due

to the structure of the arena. Similarly, all requests posed in G0
j′ for j′ > j are answered

immediately after leaving G1
j . We show that by remembering all requests, which takes 2d

memory states, Player 1 can ensure that one request is only answered with cost 5(d−1)+7.
If he uses less memory states, we show that Player 0 is able to answer every request with
cost 5(d− 1) + 6, i.e., that strategy has cost at most 5(d− 1) + 6.

First, consider the strategy τ for Player 1 that is defined as follows: During Player 0’s
part of the round, Player 1 stores the requests that she makes using 2d memory states.
Assume Player 0 then moves to G1

j . If Player 0 requested color 4j − 3 during her part of
the round, Player 1 picks the upper branch shown in Figure 7, while he chooses the lower
branch in case Player 0 requested color 4j − 1.

It remains to argue that this strategy indeed enforces a cost at least 5(d − 1) + 7.
Consider a play prefix that starts in vI and ends in cj for some 1 ≤ j ≤ d. At this point,
the request with the highest cost incurred so far is either a request for color 4j − 3 with
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cost 5(d − 1) + 4, or a request for color 4j − 1 with cost 5(d − 1) + 2. All requests for
colors c < 4j−3 have already been answered due to the structure of the arena. By coloring
the vertices resulting from the subdivision of the edges labeled with cost 5 with the color
of the target of these edges, these requests incur cost at most 5(d − 1) + 5. Moreover, all
requests for colors c > 4j − 1 have incurred a cost of at most 5(d − 1) − 1. Now, assume
that Player 0 enters G1

j . First, consider the case with an open request for color 4j − 3.
Then Player 1 moves through the lower branch of his gadget, answering this request with
cost 5(d− 1) + 7. If there is, however, an open request for color 4j− 1, then Player 1 moves
through the upper branch of his gadget, answering the open request with cost 5(d−1)+7 as
well. Thus, the strategy τ has cost 5(d−1)+7. All other requests are answered immediately
after leaving the gadget at vertex vI with a cost of at most 5(d− 1) + 5.

We now show that Player 1 indeed needs at least 2d many memory states to enforce
a cost of at least 5(d − 1) + 7. Towards a contradiction assume that Player 1 has a finite-
state strategy τ with Cst(τ) ≥ 5(d − 1) + 7 that is implemented by a memory struc-
ture (M,mI ,Upd), where |M | < 2d. We inductively construct a play ρ consistent with τ
such that Cst(ρ) ≤ 5(d− 1) + 6. Assume we have already defined a prefix π of ρ ending in
the initial vertex vI . We determine a sequence of d requests and a choice of 1 ≤ j ≤ d and
prolong π by letting Player 0 first pick the sequence of requests and then move into some
gadget G1

j . Then, Player 1 applies his strategy, which leads back to the initial vertex.

To this end, let m = Upd+(mI , π). Since |M | < 2d, and since there exist 2d play infixes
leading from the unique successor of vI to c1, there exist two such infixes π1 and π2, such
that Upd+(m,π1) = Upd+(m,π2). Let j be minimal such that the choices made in G0

j by
Player 0 differ in π1 and π2, and w.l.o.g. assume that Player 0 poses a request for color 4j−3
when playing π1, while she poses a request for color 4j − 1 when playing π2.

Now consider the response of Player 1 consistent with τ if Player 0 moves to G1
j after

the play prefix ππ1 and note that this response is the same as the one to the play prefix ππ2
due to Upd+(m,π1) = Upd+(m,π2). If Player 1 traverses the upper branch of G1

j after
witnessing ππ1 or ππ2, then he answers the request for 4j−3 posed during the traversal of π1
with cost 5(d− 1) + 6. If he, however, traverses the lower branch of G1

j after witnessing ππ1
or ππ2, then he answers the request for 4j−1 posed during π2 with cost 5(d−1)+6. In the
former case, we continue π by letting Player 0 play according to π1, while in the latter case
we continue π by letting her play according to π2. In either case, we move to G1

j afterwards.

In G1
j , Player 1 plays consistently with τ .

In both cases all requests posed in gadgets G0
j′ for j′ < j are answered after at most 5(d−

1) + 5 steps, namely upon reaching the first vertex of the subdivision of the edge leading to
the vertex cj′+1. Also, the request posed in G0

j is answered after 5(d− 1) + 6 steps. Finally,

all requests posed in gadgets G0
j′ for j′ > j are answered after at most 5(d+j−j′−1)+10 ≤

5(d− 1) + 5 steps upon visiting the vertex vI .
Since all requests are reset when reaching vI , and since the reasoning above holds true

for any memory state m reached at the end of any π as above, the play ρ resulting from an
inductive application of this construction has Cst(ρ) ≤ 5(d − 1) + 6. Since ρ is consistent
with τ , this contradicts Cst(τ) ≥ 5(d− 1) + 7 and concludes the proof of the theorem.

Note that Player 1 does not win the games Gd with regards to the classical finitary
parity condition, i.e., he cannot unbound the cost of an open request arbitrarily.
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6. Tradeoffs Between Memory and Cost

In the previous section, we have shown that an optimal strategy for either player in a parity
game with costs requires exponential memory in general. In contrast, winning strategies of
minimal size for Player 0 in parity games with costs are known to be positional [FZ14b],
while winning strategies for Player 1 require infinite memory already in the case of finitary
parity games in order to violate every bound infinitely often. Here we show that, in general,
there exists a gradual tradeoff between the size and the cost of a strategy for both players.
For Player 0, this means that she can choose to lower the guaranteed bound b by using a
larger winning strategy. Dually, Player 1 can reduce the amount of memory he has to use
by not violating every bound, but only a fixed bound b.

Theorem 6.1. Fix some d ≥ 1 and let the game Gd be as defined in the proof of Theorem 5.2.
For every j with 1 ≤ j ≤ d there exists a strategy σj for Player 0 in Gd such that

• d2 + 3d− 1 = Cst(σ1) > Cst(σ2) > · · · > Cst(σd) = d2 + 2d, and
• 1 = |σ1| < |σ2| < · · · < |σd| = 2d−1.

Also, for every strategy σ′ for Player 0 in Gd with Cst(σ′) ≤ Cst(σj) we have |σ′| ≥ |σj |.

Proof. Recall that we defined the set of strictly increasing odd sequences IncSeqd in the
proof of Theorem 5.2 and showed that a memory structure using IncSeqd as memory states
implements an optimal strategy with cost d2 + 2d. Intuitively, such a strategy stores up
to d − 1 requests made by Player 1 in his part of each round, as the final element of
each increasing sequence is fixed to be 2d − 1. The idea behind the construction of the
strategies σj is to restrict the memory of Player 0 such that she can only store up to j − 1
requests. In the extremal cases of j = 1 and j = d this implements a positional strategy
and the strategy from the proof of Theorem 5.2, respectively.

We implement σj by again using strictly increasing odd sequences, where we restrict
the maximal number of entries that differ from the maximal value of 2d − 1. Hence, in
strategy σj , Player 0 stores at most j − 1 requests.

To this end, we define the length-restricted set of strictly increasing odd sequences

IncSeqjd = IncSeqd ∩ {s = (c1, . . . , cj−1, 2d− 1, . . . , 2d− 1) | s ∈ Nd}

and pick M j
d = IncSeqjd. Note that Md

d = Md as defined in the proof of Theorem 5.2
and that M1

d is a singleton set. Clearly, the second claim of the theorem holds true, since

IncSeqj−1d ( IncSeqjd for each d ≥ 1 and each j with 1 ≤ j ≤ d. The initial memory state
is (1, 3, . . . , 2j − 3, 2d − 1, . . . , 2d − 1), the update function only stores the first j relevant
requests, and the next-move function Nxtj for Player 0 is the same as that from the proof
of Theorem 5.2 in order to obtain the memory structure Mj implementing σj via Nxtj .

It remains to show that each strategy σj realizes a cost of d2 + 3d − j and that it is
minimal for its respective cost. To this end, we fix some j with 1 ≤ j ≤ d for the remainder
of this proof. First, we show that Player 1 can enforce a cost of d2 + 3d − j if Player 0
plays consistently with σj . Intuitively, Player 1 fills the memory of Player 0 as quickly as
possible, and requests the minimal color that has not yet been requested afterwards. Thus,
he maximizes the gap between the smallest unstored request and the “default” answer of 2d.

More precisely, in each turn Player 1 requests the colors 1, 3, . . . , 2j − 3, 2j − 1, 2j −
1, . . . , 2j−1. Playing consistently with σj , Player 0 answers these requests with 2, 4, . . . , 2j−
2, 2d, 2d, . . . , 2d. Hence, the cost of the resulting play is that incurred by answering a request
for 2j − 1 in the j-th gadget of Player 1 with 2d in the j-th gadget of Player 0. As argued
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in the proof of Theorem 5.2, the cost incurred by such a request-response-pair amounts to

[d− j + 2] + [(d− 1)(d+ 2)] + d = d2 + 3d− j.
As the game restarts after Player 0’s turn, Player 1 can enforce this cost infinitely often.
Hence, Cst(σj) ≥ d2 + 3d− j.

This sequence of requests is indeed optimal for Player 1, i.e., he cannot enforce a higher
cost. Assume that Player 1 does not pose requests as specified above, but poses the requests
c1, . . . , cd. Then either there exist some k and k′ with k < k′ ≤ j, such that ck ≥ ck′ , or
there exists a k ≤ j with 2j − 1 < ck ≤ 2d− 1.

In the former case, let k′ be minimal such that such a k exists. Player 0 answers the
first k′ − 1 requests optimally before answering all remaining requests with costs at most
(d− 1)(d+ 2), as she ignores the request for ck′ . In the latter case, Player 0 again answers
all requests up to the first request as described above optimally. Afterwards, she answers
all succeeding requests with cost at most d2 + 2d + (2d − 1 − ck)/2 ≤ d2 + 3d − j. Hence,
there exists no play ρ consistent with σj and Cst(ρ) > d2 + 3d− j.

To conclude the proof, we observe that there exists no strategy σ′ with |σ′| < |σj | and
Cst(σ′) ≤ Cst(σj). The argument is nearly identical to the argument of minimality of the
strategy constructed in the proof of Theorem 5.2 and can in fact be obtained by replacing all
occurrences of 2d−1 and d2+2d by |σj | and d2+3d−j, respectively. Hence, the strategies σj
are minimal for their respective cost.

The similar result for Player 1 has a much simpler proof. Again, it suffices to reuse the
games from the lower bound.

Theorem 6.2. For each d ≥ 1 there exists a finitary parity game Gd with |Gd| ∈ O(d2),
such that for every j with 1 ≤ j ≤ d, there exists a strategy τj for Player 1 in Gd such that

• 7 = Cst(τ1) < Cst(τ2) < · · · < Cst(τd) = 5(d− 1) + 7, and
• 2 = |τ1| < |τ2| < · · · < |τd| = 2d.

Moreover, for every strategy τ ′ with Cst(τ ′) ≥ Cst(τj), we have |τ ′| ≥ |τj |.

Proof. For each j with 1 ≤ j ≤ d, let G′j be the game with 2j odd colors defined in
Theorem 5.3. We construct Gd such that it contains a dedicated initial vertex vI of color 0,
from which Player 1 may choose to move to the initial vertex of any of the G′j . Once the

play ρ has moved into some G′j , it never leaves that part of the arena, i.e., the suffix starting

at the second position of ρ is a play of G′j .
For each j, the strategy τj defined in Theorem 5.3, augmented by a single move from vI

to the sub-game G′j , satisfies the properties above. Moreover, as the sub-games G′j are

isolated from each other, each strategy τ ′ for Player 1 in Gd can be trivially transformed
into a strategy for him in the subgame G′j that τ ′ chooses at the beginning of Gd. Hence,
every strategy τj is of minimal size for the cost that it realizes.

7. Parity Games with Integer Costs

In this section, we extend the model of parity games with costs to non-negative integer
costs. Recall that the cost function Cst : E → {ε, i} assigns to each edge of G either no
cost, or a unit cost. We now consider cost functions that assign to each edge a natural
number. Formally, let A and Ω be an arena and a coloring as defined previously and
let Cst : E → N be a cost function. We call G = (A,CostParity(Ω,Cst)) a parity game with
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(non-negative) integer-valued costs. Now the cost of a play infix is the sum of the costs of
its edges and the winning condition CostParity(Ω,Cst) is defined analogously to the case
of abstract costs. We denote the highest cost assigned by Cst by W if Cst is clear from the
context. Since we assume Cst to be encoded in binary encoding, W may be of exponential
size in the number of bits required to describe Cst. To distinguish these games from those
we considered previously, we call a game G = (A,CostParity(Ω,Cst)) with Cst : E → {ε, i}
a parity game with abstract costs and omit this qualifier if it is clear which game is meant
from the context.

Formally, the size of a parity game with integer-valued costs is defined as |G| = |A| +
logW . Similarly to the abstract case, we call an edge e an ε- or an increment-edge if Cst(e) =
0 or Cst(e) > 0, respectively.

We first show that determining the winner in G with respect to a given bound b is
as easy as determining the winner in a parity game with abstract costs. Since the former
problem subsumes the latter one, this yields PSpace-completeness of the former problem
via Lemma 4.7. Afterwards, we briefly discuss the memory requirements of both players
as well as the potential tradeoffs present in this setting. In particular, we show that the
tradeoffs between the cost and the size of a strategy are, in general, more pronounced in
the case of integer-valued costs.

7.1. The Complexity of Solving Parity Games with Integer-Valued Costs Opti-
mally. We first examine the complexity of playing optimally in parity games with integer-
valued costs and show that this problem is not harder than the special case of abstract
costs. Afterwards, we argue that this implies an exponential upper bound on the size of
optimal strategies for both players.

Theorem 7.1. The following problem is PSpace-complete: “Given a parity game with
integer-valued costs G and a bound b ∈ N (in binary encoding), does Player 0 have a strat-
egy σ for G with Cst(σ) ≤ b?”

PSpace-hardness of this problem follows directly from Lemma 4.7, as every finitary
parity game is a parity game with integer-valued costs. Thus, the remainder of this section
is dedicated to showing PSpace-membership of the given problem. We follow the same
approach that solved the case of abstract costs, i.e., we first extend G with the same memory
structure yielding the qualitative parity game G′, which is still only of exponential size. In
contrast to the abstract case, however, plays of G′ are not settled after polynomially many
moves, as the upper bound on b is now exponential. Thus, we construct a novel finite-
duration game G′y, which extends G′f by a shortcut mechanism. This reduces unsettled

play prefixes to at most polynomial length. By showing equivalence of G′ and G′y and
by the fact that G′y can be simulated on a polynomially time-bounded alternating Turing
machine, we obtain PSpace-membership of the given problem. Due to the similarities
between the two proofs, we reuse notation from Section 4.1.

We begin by bounding the parameter b from above. While we could assume b < n in
the abstract case, this is not the case with integer-valued costs anymore: Here, a positional
winning strategy for Player 0, which still exists, has cost at most nW .

Corollary 7.2. Let G be a parity game with integer-valued costs with n vertices and largest
cost W . If Player 0 wins G, then she has a strategy σ with Cst(σ) ≤ nW , i.e., an optimal
strategy has cost at most nW .
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Due to this corollary, if b ≥ nW , we check for the existence of a winning strategy
for Player 0 in (A,CostParity(Cst′,Ω)), where Cst′(e) = ε, if Cst(e) = 0, and Cst′(e) = i
otherwise. This can be decided in polynomial space due to Theorem 3.1(3) and is equivalent
to deciding the given problem. Hence, we assume b < nW for the remainder of this proof.

Given G and b, we define G′ = (A ×M,Parity(Ω′)) as before, with M = [n + 1] × R,
where [n+1] implements the overflow counter and R = ({⊥}∪ [b+1])D is the set of request
functions. Since the proof of Lemma 4.2 does not rely on b < n, Player 0 wins G′ if and
only if she has a strategy of cost at most b for G. Recall that v′I is the initial vertex of A′
and that we call a play settled if it either contains a dominating cycle or if the overflow
counter is saturated.

In contrast to the abstract case, plays of G′ are not settled after polynomially many
steps, as up to nW many increment-edges may have to be traversed before an overflow
occurs, which is exponential in the size of the game. In order to be able to declare the
winner of a play after polynomially many steps, we define G′y. In this game, we skip infixes
that form cycles when projected to A, during which the costs incurred by the relevant
requests increase, but the set of these requests is stable. We say that such infixes satisfy the
shortcut criterion. When such an infix π is traversed, Player 1 has demonstrated that he
can increase the cost of the currently open relevant requests by Cst(π) without answering
any such request, i.e., he can strictly improve his situation. In G′y, Player 1 does not have to
traverse this infix (or others) until an overflow occurs, but the play continues at a position
that is as “close” to an overflow as Player 1 can get by repeatedly traversing π without
actually causing an overflow.

Formally, we say that a play infix π = (v0, o0, r0) · · · (vj , oj , rj) in A′ satisfies the short-
cut criterion if v0 = vj , if o0 = oj , if RelReq(r0) = RelReq(rj′) 6= ∅ for all 0 ≤ j′ ≤ j,
if Cst(π) > 0, and if rj(c

∗) + Cst(π) ≤ b for c∗ = arg maxc rj(c). Note that the condi-

tion rj(c
∗) + Cst(π) ≤ b is equivalent to demanding Cst(π) ≤ b−r0(c∗)

2 .
For the sake of readability, we refrain from defining the arena underlying G′y for-

mally. We rather define the set of play prefixes of G′y inductively, which are subse-
quences of plays in A′. In particular, the vertices in G′y inherit the coloring from G′.
First, v′I is a play prefix of G′y. Now, let π = (v0, o0, r0) · · · (vj , oj , rj) be a play pre-
fix of G′y and let (v′, o′, r′) be a successor of (vj , oj , rj) in A′. If there exists no j′ such
that the infix π′ = (vj′ , oj′ , rj′) · · · (vj , oj , rj)(v′, o′, r′) of π satisfies the shortcut criterion,
then π(v′, o′, r′) is a play prefix of G′y. If, however, such a j′ exists, let it be the maximal
one, let c∗ = arg maxc r

′(c), let s = Cst(π′), and let t = max{t′ > 0 | r′(c∗) + s · t′ ≤ b}.
Moreover, define r∗ as r∗(c) = r′(c) + s · t if r′(c) 6= ⊥ and r∗(c) = ⊥, otherwise.
Then, (v0, o0, r0) · · · (vj , oj , rj)(v′, o′, r∗) is a play prefix of G′y. We define the cost of the
transition from (vj , oj , rj) to (v′, o′, r∗) as Cst(vj , v

′) + s · t in G′y and redefine the notions
of the cost of a play accordingly in order to obtain uniform notation.

Moreover, we use the following notions:

• The transition from (vj , oj , rj) to (v′, o′, r∗) is a shortcut.
• The infix (vj′ , oj′ , rj′) · · · (vj , oj , rj)(v′, o′, r∗) is a shortcut cycle, where we call the

vertex (v′, o′, r∗) its destination.5

• The infix (vj′ , oj′ , rj′) · · · (vj , oj , rj)(v′, o′, r′) is the detour corresponding to the short-
cut cycle, with destination (v′, o′, r′).

5Note that, similarly to the case of dominating cycles, a shortcut cycle is only a cycle when projected to
its first component.
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Let (vj , oj , rj)(v
′, o′, r∗) be a shortcut with (v′, o′, r′) as the target of its associated

detour as defined above. We obtain RelReq(r′) = RelReq(r∗) and r′ v r∗. Moreover,
if c∗ is the open request that has incurred the highest cost in rj′ , this shortcut closes at

least half the distance between rj′(c
∗) and b, i.e., r∗(c∗) ≥ rj′(c

∗) +
b−rj′ (c∗)

2 . Hence, no
infix π containing a shortcut π′ satisfies the shortcut criterion, as the cost of π′ is already
larger than half the cost that would cause an overflow. Thus, π violates the condition that
it must be able to be traversed at least twice without causing an overflow.

However, a shortcut may be part of a dominating cycle. If the maximal color along the
detour associated with some shortcut is odd, then the shortcut cycle is an odd dominating
cycle, i.e., a play may be settled due to a dominating cycle that contains a shortcut.

The introduction of shortcuts in G′y ensures that plays in G′y are settled in polynomial
time. Fix `y = (log(nW ) + 1)(n+ 1)6, which is polynomial in the size of G.

Lemma 7.3. Let π be a play prefix of G′y. If |π| > `y, then π is settled.

Proof. Let π = (v0, o0, r0) · · · (vj , oj , rj). First, due to the same argument as in the proof
of Lemma 4.4, π may not contain a vertex repetition, as it is unsettled. Also note that π
only contains at most n overflow positions, each type 1 infix contains at most n debt-free
positions, each type 2 infix contains at most d request-adding positions and each type 3
infix contains at most d relevance-reducing positions, again due to the same arguments as
in Lemma 4.4.

Fix a non-empty type 4 infix π4 and recall that there is at least one request continuously
open throughout π4. Let c∗ be the request that has incurred the greatest cost s at the
beginning of π4 and note that the request for c∗ is continuously open throughout π4, as π4
has no relevance-reducing positions. We define the first halving position as the minimal
position k such that rk(c

∗) ≥ s + b−s
2 (if it exists). Inductively, if k is a halving position,

then the minimal k′ > k with rk′(c
∗) ≥ rk(c

∗) + b−rk(c∗)
2 is a halving position as well (if it

exists). Since at each halving position the difference between the currently incurred cost
of c∗ and the bound b has been halved when compared to the previous halving position,
there exist at most log(b) ≤ log(nW ) many such positions. Hence, splitting π4 at its
halving positions yields at most log(nW ) + 1 many infixes without overflow, debt-free,
request-adding, relevance-reducing or halving positions. We say such an infix has type 4′.

Fix a non-empty type 4′ infix π4′ . We show that π4′ contains at most n increment-
edges. Towards a contradiction assume that it contains n+ 1 increment-edges and let c∗ be
the request that has incurred the highest cost s at the beginning of π4′ . Since there exist
more than n increment-edges, there exist two such edges leading to the vertices (vk, ok, rk)
and (vk′ , ok′ , rk′) with k < k′ and vk = vk′ . If the cost of the infix (vk, ok, rk) · · · (vk′ , ok′ , rk′)
is larger than b−s

2 , then π4′ contains a halving position, which yields the desired contradic-
tion. If the cost is lower, however, then this infix satisfies the shortcut condition, since π4′
does not contain overflow positions and the relevant requests are stable throughout π4′ .
Hence, the vertex (vk′ , ok′ , rk′) is the destination of a shortcut cycle, which contradicts the
infix from (vk, ok, rk) to (vk′ , ok′ , rk′) having a cost of less than b−s

2 . Thus, π4′ contains
at most n increment-edges and, by splitting π4′ at the increment-edges, we obtain a de-
composition of π4′ into at most b + 1 infixes, each without increment-edges and without
request-adding, debt-free, and overflow positions.

Moreover, as none of the infixes contain increment-edges, they also contain no shortcuts.
Hence, each infix is of type 5, i.e., at most of length n as argued in the proof of Lemma 4.4.
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Aggregating all these bounds yields an upper bound of (log(nW ) + 1)(n+ 1)6 on the length
of an unsettled play prefix π.

We again define the winner of a play ρ of G′y such that Player 0 wins ρ if the minimal
settled prefix of ρ is settled due to an even dominating cycle. Otherwise, Player 1 wins ρ.
Due to Lemma 7.3, the winner of a play of G′y is determined after finitely many moves,
hence G′y is determined [Zer13]. It remains to show that solving G′y actually solves G′.
Lemma 7.4. Player 0 wins G′ if and only if she wins G′y.

Proof. We first show that, if Player 0 wins G′y, then she also wins G′. To this end, let σy be
a winning strategy for Player 0 in G′y. We construct a winning strategy σ′ for her in G′ by
mimicking the moves made in G′ in G′y using a simulation function h mapping play prefixes
in G′ to play prefixes in G′y. This simulation function satisfies the same invariant as in the
proof of Lemma 4.5, i.e.:

Let π be consistent with σ′ and end in (v, o, r). Then, h(π) is consistent
with σy, is unsettled, and ends in (v, o′, r′) with (o′, r′) w (o, r).

We define h and σ′ inductively and simultaneously, starting with h(v′I) = v′I , which
obviously satisfies the invariant. Now let π be a play prefix of G′ consistent with σ′, ending
in (v, o, r), and assume h(π) is defined. Due to the invariant, h(π) ends in some (v, oy, ry)
with (o, r) v (oy, ry). If (v, o, r) ∈ V ′0 , let σy(h(π)) = (v∗, o∗y, r

∗
y) and define σ′(π) =

(v∗, o∗, r∗), where (o∗, r∗) = Upd((o, r), (v, v∗)). Otherwise, if (v, o, r) ∈ V ′1 , let (v∗, o∗, r∗)
be an arbitrary successor of (v, o, r) in A′. In either case, let π∗ = π · (v∗, o∗, r∗).

It remains to define h(π∗). To this end, let (o∗y, r
∗
y) be the unique memory state

such that π∗y = h(π) · (v∗, o∗y, r∗y) is a play prefix of G′y. If π∗y is unsettled, we define
h(π∗) = π∗y. This choice satisfies the invariant: If the vertex (v∗, o∗y, r

∗
y) is the destination

of a shortcut, then let (v∗, o∗→, r
∗
→) be the destination of its corresponding detour. We obtain

(o∗y, r
∗
y) w (o∗→, r

∗
→) w (o∗, r∗) due to Lemma 4.3. Otherwise, i.e., if (v∗, o∗y, r

∗
y) is not the

destination of a shortcut, then Lemma 4.3 yields the invariant directly. Now consider the
case that π∗y is settled. Then it is settled due to containing an even dominating cycle as a
suffix, due to the invariant and due to π∗y being consistent with the winning strategy σy
for Player 0. We define h(π∗) by removing the settling dominating cycle similarly to the
proof of Lemma 4.5. Using the same argument as in the proof of that lemma, we obtain
that h(π∗) satisfies the invariant.

It remains to show that σ′ is winning for Player 0. To this end, consider a play ρ
consistent with σ′ and let πj be the prefix of length j of ρ. As all πj are consistent with σ′,
due to the invariant, neither the overflow counter of the h(πj), nor that of the πj reaches n.
Hence, the colors of the last vertices of πj and h(πj) coincide. Recall the argument in the
proof of Lemma 4.5: If the largest color c appearing infinitely often in ρ is odd, then it
can only occur finitely often on even dominating cycles. Hence, after some prefix, every
time a vertex of color c is visited, this vertex is added to the simulated play prefix and
never removed. This unbounded growth contradicts the h(πj) being unsettled, as every
play prefix of G′y of length `y + 1 is settled due to Lemma 7.3. Thus, ρ satisfies the parity
condition, i.e., σ′ is indeed winning for Player 0.

For the other direction, we show that if Player 1 wins G′y, he wins G′, which suffices
due to determinacy. To this end, let τy be a winning strategy for Player 1 in G′y. We
construct a winning strategy τ ′ for him in G′ by simulating play prefixes in G′ by such
prefixes in G′y, from which we remove shortcut- and dominating cycles. We again define a
simulation function h that maintains the same invariant as in the proof of Lemma 4.5, i.e.:
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Let π be consistent with τ ′ and end in (v, o, r) with o < n. Then, h(π) is
consistent with τy, is unsettled, and ends in (v, o′, r′) with (o′, r′) v (o, r).

We define h and τ ′ inductively and simultaneously, starting with h(v′I) = v′I , which clearly
satisfies the invariant. Now let π be a play prefix of G′ consistent with τ ′ and ending
in (v, o, r). If (v, o, r) ∈ V ′0 , then let (v∗, o∗, r∗) be an arbitrary successor of (v, o, r) in A′.
Otherwise, if (v, o, r) ∈ V ′1 , let τy(h(π)) = (v∗, o∗y, r

∗
y) and define τ ′(π) = (v∗, o∗, r∗),

where (o∗, r∗) = Upd((o, r), (v, v∗)). In either case, let π∗ = π · (v∗, o∗, r∗).
It remains to define h(π∗) in the case that o∗ < n. To this end, let (o∗y, r

∗
y) be the

unique memory state such that π∗y = h(π) · (v∗, o∗y, r∗y) is a play prefix of G′y. If π∗y is
unsettled and if (v∗, o∗y, r

∗
y) is not the destination of a shortcut, we define h(π∗) = π∗y,

which satisfies the invariant due to Lemma 4.3. If π∗y is settled due to o∗y = n, then, due to
the invariant and Lemma 4.3, we obtain o∗ = n, i.e., we can define h(π∗) arbitrarily. If π∗y
is settled due to reaching a dominating cycle, we remove this cycle from π∗y similarly to the
construction from the proof of Lemma 4.5.

Finally, consider the case that π∗y is unsettled and (v∗, o∗y, r
∗
y) is the destination of a

shortcut, with (v∗, o∗→, r
∗
→) as the destination of the corresponding detour. We differentiate

whether the destination (v∗, o∗y, r
∗
y) of the shortcut merely allows Player 1 to catch up

to the play prefix constructed in G′, or whether it is more advantageous for him than the
position (v∗, o∗, r∗) actually reached in G′. In the former case, i.e., if (o∗, r∗) w (o∗y, r

∗
y), we

define h(π∗) = π∗y, which satisfies the invariant by assumption. In the latter case, however,
i.e., if (o∗, r∗) w (o∗y, r

∗
y) does not hold true, we remove the shortcut cycle similarly to the

removal of a settling dominating cycle, obtaining πy, and define h(π∗y) = πy. This satisfies
the invariant due to (o∗, r∗) w (o∗→, r

∗
→), which we obtain via Lemma 4.3, and the definition

of the shortcut condition.
It remains to show that τ ′ is indeed winning for Player 1 in G′. To this end, consider a

play ρ consistent with τ ′ and let πj = (v0, o0, r0) · · · (vj , oj , rj) be the prefix of length j + 1
of ρ. If the overflow counter along ρ eventually saturates, ρ is clearly winning for Player 1.
Hence, assume the opposite, and note that, due to the invariant of h, the colors of the last
vertices of πj and h(πj) coincide for all j ∈ N. Let c be the largest color occurring infinitely
often along ρ and assume towards a contradiction that c is even. Similarly to the previous
argument, c must either occur on odd dominating cycles or on removed shortcuts after
some finite prefix, as these are the only play infixes that are removed from the simulation.
Similarly to the proof of Lemma 4.5, c can only occur finitely often on odd dominating
cycles, as each such occurrence implies one occurrence of some larger, odd color.

Now assume that c occurs infinitely often on removed shortcut cycles. Since the overflow
counter along ρ never saturates, none of the h(πj) contains a saturated overflow counter
either. Moreover, as both the removal of an odd dominating cycle and that of a shortcut
retain the value of the overflow counter, the values of the overflow counter of the h(πj)

eventually stabilize. Let h(πj) = (vj0, o
j
0, r

j
0) · · · (v

j
kj
, ojkj , r

j
kj

). Pick p such that op = oj and

opkp = ojkj for all j > p, and such that c is the largest color occurring on the suffix of ρ

starting at position p.
If opkp < op, then h(πj) results from h(πj−1) by removing a shortcut cycle only finitely

often. In fact, after reaching πp, no shortcut cycle is removed anymore: If a shortcut is

used in the move from h(πj−1) to h(πj), then (oj , rj) w (ojkj , r
j
kj

), i.e., the shortcut cycle is

not removed. Hence, only finitely many shortcut cycles are removed, which contradicts c
occurring on infinitely many of these. Thus, we obtain opkp = op, which implies rpkp v rp
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due to the invariant of h. In particular, for each relevant request that is open in rjkj , some

larger one is open in rj for each j > p.
If c occurs on a removed shortcut cycle, then cmust be smaller than the smallest relevant

request that is open during the witnessing infix: Otherwise it would answer that relevant
request, due to c being even. Hence the detour corresponding to the infix would violate
the shortcut condition. While there may be some open requests for colors c′ < c in the
corresponding infix in ρ, visiting c does not answer all relevant requests in that corresponding
infix in ρ, as argued before. This implies traversing the shortcut cycle increases the cost
of some request in ρ. Furthermore, since c is the maximal color visited in the considered
suffix, this request eventually overflows after traversing at most b+1 many increment-edges.
This contradicts the choice of p such that no overflows occur after πp. If less than b + 1
increment-edges occur during the remainder of the play, then also at most b + 1 shortcuts
occur, since each shortcut requires the traversal of at least one increment-edge. This in turn
contradicts c occurring on infinitely many removed shortcuts.

Hence, since vertices of color c only occur finitely often on odd dominating cycles and
on removed shortcut cycles, after some finite prefix, each visited vertex of color c is added
to the simulated play and never removed. Thus, the h(πj) grow increasingly longer. Such
unbounded growth contradicts them being unsettled, as required by the invariant. This is
due to every play prefix of length at least ly being settled, due to Lemma 7.3. Hence, c is
odd, i.e., ρ is winning for Player 1.

Having shown G′y to be equivalent to G′, which is in turn equivalent to G, we can use the
same construction as in the proof of Lemma 4.6, i.e., simulate G′y on an alternating Turing
machine, in order to decide the winner of G′y. Due to Lemma 7.3, and due to log(nW )
being polynomial in the size of the description of G, this Turing machine is polynomially
time-bounded. Thus, a similar proof to that of Lemma 4.6 yields PSpace-membership
of the given problem. Together with the previously stated PSpace-hardness of the given
problem, this concludes the proof of Theorem 7.1

Due to the same reasoning as for the results of Section 5, we obtain asymptotically tight
exponential bounds for the memory required by both players in order to win with respect
to a given bound b. The upper bounds are obtained as a corollary of the equivalence of G
and G′.

Corollary 7.5. Let G be a parity game with integer-valued costs containing n vertices and d
odd colors.

• If Player 0 has a strategy σ for G with Cst(σ) = b, then she also has a strategy σ′

with Cst(σ′) ≤ b and |σ′| = (b+ 2)d.
• If Player 1 has a strategy τ for G with Cst(τ) = b, then he also has a strategy τ ′

with Cst(τ ′) ≥ b and |τ ′| = n(b+ 2)d.

We obtain matching lower bounds from Theorem 5.2 and Theorem 5.3.

7.2. Tradeoffs Between Memory and Cost in Parity Games with Integer-Valued
Costs. As every finitary parity game is a parity game with integer-valued costs, Theo-
rem 6.1 holds true for the latter kind of games as well. In this result, the tradeoff in terms
of costs ranges over an interval of size d, while the size of strategies ranges from positional
ones to strategies of exponential size. Hence, even a small improvement in the cost real-
ized by a strategy comes at the price of an exponential increase in memory. In the case
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of a binary encoding of integer-valued costs, however, an exponential increase in the size
of memory used by a strategy may yield an exponential improvement in terms of the cost
realized by the strategy.

Theorem 7.6. For each d ≥ 1, there exists a parity game with integer-valued costs Gd
with |Gd| ∈ O(d2), such that for every j with 1 ≤ j ≤ d there exists a strategy σj for
Player 0 in Gd such that

• (d+ 1)2d + 2d−1 = Cst(σ1) > Cst(σ2) > · · · > Cst(σd) = (d+ 1)2d, and
• 1 = |σ1| < |σ2| < · · · < |σd| = 2d−1.

Also, for every strategy σ′ for Player 0 in Gd with Cst(σ′) ≤ Cst(σj) we have |σ′| ≥ |σj |.

Proof. We reuse the arena from the game Gd constructed in the proof of Theorem 5.2 and
redefine the cost function Cst. We do so by assigning a cost of 2c−1 to each edge leading
to some vertex colored with either the odd color 2c− 1 or the even color 2c. Moreover, we
assign a cost of 2d− 2c−1 to each edge leading away from some such vertex. All other edges
are edges of cost 0. The traversal of such a gadget with costs incurs a uniform cost of 2d,
regardless of the path taken through it. As the cost of each edge can be encoded using d
bits, Gd is indeed of size O(d2).

For any j with 1 ≤ j ≤ d let σj be a strategy as defined in Theorem 6.1. Due to similar

arguments as in the proof of that theorem, we obtain Cst(σj) = (d + 1)2d + 2d−1 − 2j−1,
which satisfies the first property stated in the given theorem. As the strategies remain
unchanged from the proof of Theorem 6.1, they also satisfy |σj | < |σj+1|. Finally, similar
reasoning to the proof of Theorem 6.1 yields that each σj is minimal for its cost.

8. Streett Games with Costs

In this section, we consider the Streett condition with costs [FZ14b], which generalizes both
the parity condition with costs as well as the classical Streett condition. We show that, given
some Streett game with costs G and bound b, the problem of deciding whether there exists
a strategy for Player 0 in G with cost at most b, is ExpTime-complete. Thus, this problem
is harder to solve than that of solving classical Streett games (unless co-NP = ExpTime),
and as hard as solving both finitary Streett games and Streett games with costs [FZ14b]. As
a corollary of this result and of those previously obtained in this work we furthermore obtain
tight exponential bounds on the memory required by both players in such a game. We begin
by formally defining the Streett condition with costs, before examining its complexity and
the memory required by both players.

Let A = (V, V0, V1, E, vI) be an arena and let Γ = (Qc, Pc)c∈[d] for some d ≥ 1 be a non-
empty, finite family of so-called Streett pairs of subsets of V . Intuitively, for each c ∈ [d], the
set Qc denotes vertices requesting condition c, which are answered by visiting some vertex
in Pc. Finally, let Cst = (Cstc)c∈[d] be a family of cost functions, where Cstc : E → N for
each c ∈ [d], which we extend to cost functions over plays as usual. We denote the highest
cost assigned by any Cstc ∈ Cst by W .

Let ρ = v0v1v2 · · · be a play in A and let j ∈ N be a position. We first define the
cost-of-response for a single Streett pair (Qc, Pc) as

StCorc(ρ, j) =

{
min{Cst(vj · · · vj′) | j′ ≥ j and vj′ ∈ Pc} if vj ∈ Qc
0 otherwise
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with min ∅ =∞. Note that, in contrast to parity games, the visit to vj may open multiple
requests, as there may exist multiple c such that vj ∈ Qc. Thus, we define the (total)
cost-of-response at position j ∈ N of ρ by

StCor(ρ, j) = max{StCorc(ρ, j) | c ∈ [d]} .
Thus, StCor(ρ, j) is the cost of the infix of ρ from position j to the earliest position where
all requests opened at position j are answered, and ∞, if at least one such request is not
answered. Moreover, StCor(ρ, j) is zero if no requests are opened at position j.

The Streett condition with costs is then defined as

CostStreett(Γ,Cst) = {ρ ∈ V ω | lim supj→∞ StCor(ρ, j) <∞} ,
i.e., ρ satisfies the condition if there exists a bound b ∈ N such that all but finitely many
requests are answered with cost less than b. In particular, only finitely many requests
may be unanswered, even if they only incur finite cost. Similarly to the case of the parity
condition with costs, the bound b may depend on the play ρ.

A game G = (A,CostStreett(Γ,Cst)) is called a Streett game with costs. If all Cstc
assign 0 to every edge, then CostStreett(Γ,Cst) is a classical Streett condition [Str81],
denoted by Streett(Γ). Dually, if all Cstc assign 1 to every edge, then CostStreett(Ω,Cst)
is equal to the finitary Streett condition over Γ, as introduced by Chatterjee et al. [CHH09]
and denoted by FinStreett(Γ). In these cases, we refer to G as a Streett or a finitary Streett
game, respectively.

We assume the cost functions to be given in binary encoding.6 Hence, in general, the
largest cost W is exponential in 2|Cst|, where |Cst| is the length of the encoding of Cst.
Thus, we define |G| = |A|+ d+ logW .

Theorem 8.1.

(1) Solving Streett games is co-NP-complete. If Player 0 wins, then she has a winning
strategy of size d!, while Player 1 has uniform positional winning strategies [Hor05].

(2) Solving finitary Streett games is ExpTime-complete.7 If Player 0 wins, then she has
a winning strategy of size d2d, but Player 1 has in general no finite-state winning
strategy [CHH09].

(3) Solving Streett games with costs is ExpTime-complete. If Player 0 wins, then she
has a winning strategy of size 2d((2d)!), but Player 1 has in general no finite-state
winning strategy [FZ14b].

We define the cost of strategies for Streett games with costs analogously to the parity
case. In contrast to that case, however, we obtain an exponential upper bound on the cost
of an optimal strategy for a Street game with costs by using Theorem 8.1(3) and applying
the same pumping argument as for Corollary 3.2.

Corollary 8.2. Let G be a Streett game with costs with n vertices and d Streett pairs.
Moreover, let W be the largest cost in G. If Player 0 wins G, then she has a strategy σ with
Cst(σ) ≤ nW · 2d((2d)!).

Similarly to the case of parity games with costs, this bound is tight. The games
demonstrating the lower bound are, however, no longer trivial. We adapt the games used

6All lower bounds shown for this setting already hold for that of finitary Streett games.
7Shown in unpublished work by Chatterjee, Henzinger, and Horn, obtained by a minor modification to

the proof of ExpTime-hardness of solving request-response games [CHH11].
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Figure 9: The game G3.

in [CHH11] for demonstrating the necessity for exponential memory for Player 0 in request-
response games in order to show this bound.

Theorem 8.3. For each d ≥ 0, there exists a finitary Streett game Gd with O(d) vertices
and d+ 1 Streett pairs, such that Player 0 has a strategy with cost b = 3(2d− 1) + 2, but no
strategy with cost less than b.

Proof. Figure 9 shows the game G3. In general, the game Gd consists of an initializing prefix,
i.e., the vertices P and Q, a central vertex m, and one branch for each of the d+ 1 Streett
pairs, which can be entered from m. Each branch consists of one path leading back to the
central vertex as well as one path restarting the game via moving to the initializing prefix.

The vertices P and Q answer and open all d + 1 requests, respectively, while a visit
to m neither opens nor answers any requests. When moving into the branch associated with
condition c, the initial visit to Pc answers the request for condition c. Afterwards, visiting c
or c opens requests for all conditions c′ < c and answers all requests for conditions c′ > c,
respectively.

Intuitively, by moving to Pc, Player 0 claims that c is the smallest index for which a
request is open and answers the request for that condition. If this claim holds true, the best
choice for Player 1 is to move to c, where requests for all conditions c′ < c are opened and
the play returns to m. If, on the other hand, this claim does not hold true, then Player 1 can
move to c, where all requests for conditions c′ > c are answered and Player 1 can increase
the cost of the remaining requests arbitrarily before moving to P and thereby starting the
next round. Note that staying in c infinitely long is losing for Player 1, as no requests are
opened in that vertex and thus, the cost of the resulting play is 0.

The optimal strategy for Player 0 implements a binary counter: Whenever the play
reaches m, she has to recall the smallest c for which there is an open request and move
to Pc. Since moving to Pc and returning to m via c reopens requests for all conditions c′ < c,
Player 0 has to repeat answering these requests from smallest to largest before she can
answer the outstanding request for condition c + 1. Figure 10 shows the cost of requests
during a play consistent with this strategy in G3.

Note that, in this example, after answering the request for 3, Player 0 continues im-
plementing a binary counter until no more requests are open. At this point, Player 0 may
choose an arbitrary branch. If Player 1 then moves to the trap-vertex and subsequently
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Branch 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 · · ·
r(0) 1 ⊥ 1 ⊥ 1 ⊥ 1 ⊥ 1 ⊥ 1 ⊥ 1 ⊥ 1 ⊥ · · ·
r(1) 1 4 ⊥ ⊥ 1 4 ⊥ ⊥ 1 4 ⊥ ⊥ 1 4 ⊥ ⊥ · · ·
r(2) 1 4 7 10 ⊥ ⊥ ⊥ ⊥ 1 4 7 10 ⊥ ⊥ ⊥ ⊥ · · ·
r(3) 1 4 7 10 13 16 19 22 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ · · ·

Figure 10: An optimal play for Player 0 in G3. We only consider the positions at which the
play is at vertex m. The topmost row denotes the branch visited in-between two
visits to that vertex.

to P , he starts the next round of the game. If he, however, returns to m, Player 0 obtains
new open requests which she has to answer as she did before. Since no request for 3 can be
opened without moving to P , not moving on to the next round will not yield higher costs
than doing so.

As illustrated in Figure 10, answering the request for condition d posed at the beginning
of each round requires 2d − 1 many visits to branches, as well as an additional step into
the first vertex of the branch of condition d. As each of the visits to the branches implies
the traversal of three edges, this request is answered b steps after it is posed. Hence, the
strategy implementing a binary counter has a cost of b = 3(2d − 1) + 2.

Moreover, as argued above, in each round in which Player 0 deviates from this strategy,
Player 1 can move the play into the “trap”-vertex c of the current branch upon the first
deviation, where he can loop until the cost of an open request increases beyond b, before he
moves to the next round. Hence, Player 0 has to adhere to this strategy after finitely many
rounds, i.e., each strategy for her has cost at least b.

8.1. The Complexity of Solving Streett Games with Costs Optimally. We now
show that solving Streett games with costs with respect to a given bound b is ExpTime-
complete. Since solving finitary Streett games is complete for the same complexity class,
and since an exponential b suffices for Player 0 to win in such games due to Corollary 8.2,
we can encode the problem of solving a finitary Streett game as the given problem with only
a linear blowup, due to binary encoding of b. Hence, the latter problem is ExpTime-hard.

In order to show membership of the given problem in ExpTime, we reduce it to that
of solving a classical Streett game with exponentially many vertices, but with only a single
additional Streett pair. Since Streett games with n vertices and d Streett pairs can be solved
in time O(nd(d!)) using the algorithm from Piterman and Pnueli [PP06], this construction
yields ExpTime-membership of the given problem.

Theorem 8.4. The following problem is ExpTime-complete: “Given a Streett game with
costs G and a bound b ∈ N in binary encoding, does Player 0 have a strategy σ for G with
Cst(σ) ≤ b?”

Proof. ExpTime-hardness of this problem follows from the ExpTime-hardness of deciding
the winner in a finitary Streett game [FZ14b] as argued above.

We now show the given problem to be in ExpTime. The idea for this proof is the same
as for the proof of Lemma 4.6, i.e., we reduce the problem to solving a classical Streett
game G′. Instead of simulating G′ on the fly, however, we construct and solve it explicitly.
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Let G = (A,CostStreett(Γ,Cst)) be a Streett game with costs with n vertices and d
Streett pairs. Moreover, let W be the largest cost assigned by any Cstc in Cst. If b ≥ nW ·
2d((2d)!), then we construct G′ = (A,CostStreett(Γ,Cst′)) with Cst′(e) = ε, if Cst(e) = 0
and Cst′(e) = i otherwise and solve G′ using an exponential-time algorithm [FZ14b]. If
Player 0 can ensure some upper bound on the cost incurred in G′, then she can also do so
in G using the same strategy. Thus, by Corollary 8.2, she can bound the cost from above
by b. Similarly, if Player 1 wins G′, then he can still do so in G using the same strategy.
Hence, solving G′ solves G with respect to b.

Thus, assume b < nW · 2d((2d)!). For the reduction of G to a Streett game we again
use a memory structure that keeps track of the costs of responses accumulated so far, up
to the bound b, while allowing this counter to overflow at most n times. Hence, let M =
(M,mI ,Upd) be the memory structure with memory states M = [n+ 1]× ({⊥}∪ [b+ 1])[d],
where we define mI and Upd analogously to the parity case. Note that M is of size
|M| = (n+ 1) · (b+ 2)d.

Also, given Γ = (Qc, Pc)c∈[d], we construct Γ′ = (Q′c, P
′
c)c∈[d+1] as (Q′c, P

′
c) = (Qc ×

M,Pc ×M) for c ∈ [d], and (Q′d, P
′
d) = (V × ({⊥} ∪ [b + 1])[d] × {n}, ∅). Thus, Γ′ is the

conjunction of the extension of Γ to the game G ×M and one additional Streett pair which
causes Player 0 to lose once the overflow counter reaches the value n. Hence |Γ′| = |Γ|+ 1.

We define G′ = (A×M,Streett(Γ′)). Player 0 wins G′ if and only if she has a strategy
with cost at most b in G, due to the same arguments as in the proof of Lemma 4.2.

Moreover, using the algorithm presented in [PP06], we can solve G′ in exponential time
in |G|. The Streett game G′ has n′ ∈ O(n2bd) vertices. Since we assume b ≤ nW · 2d((2d)!),
we obtain n′ ∈ O((nW · 2d((2d)!))d). Moreover, G′ has d′ = d+ 1 many Streett pairs.

As discussed above, by using the algorithm for solving Streett games by Piterman and
Pnueli [PP06], we obtain an algorithm that is polynomial in the number of vertices n of G,
while it is exponential in the number of Streett pairs d and logW . Hence, the given problem
is in ExpTime.

This result also holds true if the bound b is given in unary encoding. As every number
in unary encoding can be rewritten in binary encoding in polynomial time, membership
in ExpTime follows directly. Moreover, recall that ExpTime-hardness of the problem
of Theorem 8.4 follows from ExpTime-hardness of solving finitary Streett games. This
problem is in turn shown to be ExpTime-hard via a reduction from the word problem
for polynomially time-bounded alternating Turing machines. A minor modification of that
proof yields that a polynomial bound suffices for Player 0 in order to win the resulting
finitary parity game. Hence, the problem is still ExpTime-hard when considering a unary
encoding of the bound b.

8.2. Memory Requirements of Optimal Strategies in Streett Games with Costs.
As we have shown in the previous section, Streett games with costs can be solved by
reducing them to classical Streett games of exponential size, but with only linearly many
Streett pairs. Similarly to Corollary 5.1, we obtain an exponential upper bound on the
memory necessary for both players to win a Streett game with costs with respect to a given
bound as a corollary of Theorems 8.1(1) and 8.4.

Also, similarly to Corollary 5.1, we are able to remove the overflow counter from our
memory structure for Player 0 by letting her play according to the largest value of this
counter for which she still has a winning strategy. This yields an improved upper bound
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on her required memory. Moreover, we obtain matching lower bounds for both players as
a corollary of Theorems 5.2 and 5.3, as every finitary parity game with costs with d colors
can be turned into a finitary Streett game of the same size with d Streett pairs.

Corollary 8.5. Let G be a Streett game with costs with n vertices and d Streett pairs.
Moreover, let b ∈ N be some bound.

(1) If Player 0 has a strategy σ in G with Cst(σ) ≤ b, then she also has a strategy σ′

with Cst(σ′) ≤ b and |σ′| = (d+ 1)! · (b+ 2)d.
(2) If Player 1 has a strategy τ in G with Cst(τ) ≥ b, then he also has a strategy τ ′

with Cst(τ ′) ≥ b and |τ ′| = n(b+ 2)d.

These bounds are asymptotically tight already for finitary Streett conditions.

9. Conclusion

In this work we have shown that playing parity games with costs optimally is harder than
just winning them, both in terms of computational complexity as well as in terms of memory
requirements of strategies. We proved checking an upper bound on the value of an optimal
strategy to be complete for polynomial space, while just solving such games is in UP ∩
co-UP, respectively in PTime for the special case of finitary parity games. Moreover,
we have shown that optimal strategies in general require exponential memory, but also
that exponential memory is always sufficient to implement optimal strategies. In contrast,
winning strategies in these games are positional. Finally, we have shown that, in general,
there exists a gradual tradeoff between the size and the cost of strategies.

Also, we considered Streett games with costs: checking an upper bound on the cost of an
optimal strategy is ExpTime-complete and exponential memory is sufficient to implement
optimal strategies. Thus, playing optimally is as hard as just winning.

All our proofs can be adapted for the case of bounded parity (Streett) games and
bounded parity (Streett) games with costs [CHH09, FZ14b]. While the parity condition
with costs only restricts the cost-of-response in the limit, the bounded parity condition
prohibits any unanswered request with cost ∞ (but still allows finitely many unanswered
requests with finite cost). The other conditions are defined similarly.

In further research, we are considering two additional directions in which to extend
the cost function: By allowing negative integers as costs and by allowing multiple cost
functions, i.e., by extending the parity winning condition with a family of cost functions
similar to the case of Streett conditions. Moreover, we investigate tradeoffs in delay games
with quantitative winning conditions. Preliminary results exhibited a tradeoff between costs
of strategies and delay [Zim17], but there are no results involving the size of strategies.
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