
Original Problem

Generalization
and

begWt

a

|·| % · comp ·

indicesOf

=ab 12

Set of generated Problems

Conretization
Filtering

Choice-formula

and / or

begWt /
endWt

indicesOf

aa / ab /
ba / bb

|·| % · comp ·

a / b

2 / 3

0 / 1 / 2 / 3

= / ≠ / > /
≥ / ≤ / <

and

begWt

a

|·| % · comp ·

indicesOf

=ba 12

or

endWt

b

|·| % · comp ·

indicesOf

>ba 13

and

endWt

a

|·| % · comp ·

indicesOf

≤bb 12

Idea

Our approach is based on the idea of
Singh et al. for creating algebra pro-
blems from [2]. We first translate the
original problem into a logical for-
mula. Following this, we generalize
this formula to a choice-formula that
represents multiple formulas of the
same structure. We then concretize
this generalization using a SMT-
solver. As a final step, we filter the
problems that are too difficult or too
easy.

Method

Our algorithm takes a Mosel-formula
as input. This formula describes the
regular language for which an auto-
maton is to be constructed [3].
We then transform the formula's AST
into the AST of the corresponding
Choice-formula, which describes a
set of Mosel-formulas.
This choice formula is then transla-
ted into SMT-constraints and handed
off to a solver. Each solution of these
constraints is equivalent to a new

Acknowledgements

The author would like to thank Prof. Sanjit Seshia,
the students of CS298-98 and Loris D'Antoni for
continuous feedback on this project as well as the
authors of automatatutor.com, whose code was
used as the basis for the implementation.

References

[1] J. Hopcroft et al. , Introduction to Automata
Theory, Languages and Computation, Addison-
Wesley, 2011
[2] R. Singh et al. , Automatically Generating Alge-
bra Problems, AAAI-12
[3] R. Alur et al. , Automated Grading of DFA Con-
structions, IJCAI-13

Mosel-formula. The translation to
SMT-constraints allows us to control
the instantiation more precisely. This
allows us to keep the generated
formulas similar to the original one.
Since Mosel-formulas correspond to
the regular languages, we can then
construct the DFA corresponding to
each generated formula. By compa-
ring the two DFAs of the generated
and the original formula, we can then
filter those formulas that result in a
DFA that is too different from the
original one.

Problem

Deterministic Finite Automata (DFA)
are an important concept taught to
nearly every CS student. Most cour-
ses support the material taught with
a set of tasks of the form "Construct
a DFA that recognizes the language
L" . However, there is usually at most
one exercise for each concept that
can be used when solving such a
problem. We solve this problem by
generating a set of problems of this
form that are of both similar form
and similar difficulty to a given
problem.

Results

Runs on testcases taken from [1]
terminate in around 1 to 2 seconds
and usually generate around 50 to
200 problems. We inspected the re-
sulting problems and found them to
be of similar difficulty to the ori-
ginal ones. The number and quality
of the resulting problems as well as
the time for generating them de-
pends heavily on the complexity and
formulation of the original problem.

0.0 1.0 2.0 3.0 4.0 5.0
Time [s]

5

10

15

20

B
en

ch
m

ar
ks

 c
om

pl
et

ed

Total number of benchmarks

Strict filtering

Lenient filtering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Benchmark ID

100

101

102

103

104

N
um

be
r

of
 P

ro
bl

em
s

Strict filtering

Lenient filtering

startsWith 'a' and |indOf 'ab'| % 2=1
startsWith 'a' and |indOf 'ba'| % 2=1
endsWith 'b' or |indOf 'ab'| % 2=1
endsWith 'b' or |indOf 'aa'| % 2=1
endsWith 'a' and |indOf 'ba'| % 2<1
startsWith 'b' or |indOf 'bb'| % 2=1
startsWith 'b' and |indOf 'bb'| % 2=1
endsWith 'b' and |indOf 'aa'| % 2=1
endsWith 'a' or |indOf 'ba'| % 2<1
startsWith 'a' or |indOf 'ab'| % 2=1
startsWith 'a' or |indOf 'ba'| % 1>0

Examples of original formula and generated
formulas

Problem Generation for DFA Construction

Alexander Weinert
alexander.weinert@rwth-aachen.de

