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Idea

Our approach is based on the idea of
Singh et al. for creating algebra pro-
blems from [2]. We first translate the
original problem into a logical for-
mula. Following this, we generalize
this formula to a choice-formula that
represents multiple formulas of the
same structure. We then concretize
this generalization using a SMT-
solver. As a final step, we filter the
problems that are too difficult or too
easy.

Method

Our algorithm takes a Mosel-formula
as input. This formula describes the
regular language for which an auto-
maton is to be constructed [3].
We then transform the formula's AST
into the AST of the corresponding
Choice-formula, which describes a
set of Mosel-formulas.
This choice formula is then transla-
ted into SMT-constraints and handed
off to a solver. Each solution of these
constraints is equivalent to a new
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Mosel-formula. The translation to
SMT-constraints allows us to control
the instantiation more precisely. This
allows us to keep the generated
formulas similar to the original one.
Since Mosel-formulas correspond to
the regular languages, we can then
construct the DFA corresponding to
each generated formula. By compa-
ring the two DFAs of the generated
and the original formula, we can then
filter those formulas that result in a
DFA that is too different from the
original one.

Problem

Deterministic Finite Automata (DFA)
are an important concept taught to
nearly every CS student. Most cour-
ses support the material taught with
a set of tasks of the form "Construct
a DFA that recognizes the language
L" . However, there is usually at most
one exercise for each concept that
can be used when solving such a
problem. We solve this problem by
generating a set of problems of this
form that are of both similar form
and similar difficulty to a given
problem.

Results

Runs on testcases taken from [1 ]
terminate in around 1 to 2 seconds
and usually generate around 50 to
200 problems. We inspected the re-
sulting problems and found them to
be of similar difficulty to the ori-
ginal ones. The number and quality
of the resulting problems as well as
the time for generating them de-
pends heavily on the complexity and
formulation of the original problem.
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Strict filtering 

Lenient filtering 

startsWith 'a' and |indOf 'ab'| % 2=1
startsWith 'a' and |indOf 'ba'| % 2=1
endsWith 'b' or |indOf 'ab'| % 2=1
endsWith 'b' or |indOf 'aa'| % 2=1
endsWith 'a' and |indOf 'ba'| % 2<1
startsWith 'b' or |indOf 'bb'| % 2=1
startsWith 'b' and |indOf 'bb'| % 2=1
endsWith 'b' and |indOf 'aa'| % 2=1
endsWith 'a' or |indOf 'ba'| % 2<1
startsWith 'a' or |indOf 'ab'| % 2=1
startsWith 'a' or |indOf 'ba'| % 1>0

Examples of original formula and generated
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