Analysis of Arithmetic PROLOG Programs using
Abstract Interpretation

Alexander Weinert

Master Thesis Presentation

June 22, 2015

Roadmap

YES/NO/
MAYBE

Program

Question: Do all evaluations of the program terminate?

PROLOG - Introduction

fac(X) =
if X > 0 then Y1 = fac(X-1), return Y1 * X
if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, ¥) :- X =:=0, Y is 1.

PROLOG - Evaluation
fac(X, ¥) :- X >0, fac(X -1, Y1), Y is Y1 * X.
fac(X, ¥) :- X =:=0, Y is 1.

|1>0,fac(1—1, Y1), Res is Y1 -1

|fac(1—1,Y1),Res is V1 1|

1-1>0,fac(l—1-1,Y2),
Yois Yi-(L—1),Resis Y; -1

v
|Y1isl,ResisY1o1|

|1—1::=0,Y1 is 1, Res is Y1~1|

ProLOG - Cut

fac(X, ¥) :-X>0, !, fac(X -1, Y1), Y is Y1 * X.
fac(X, ¥) :- X =:=0, Y is 1.

ProLOG - Cut

fac(1, Res)

|1>0,1,fac(1 -1, 1), Res is ¥4 -1|

1==0,Res is 1

|!, fac(1 -1, Y1), Res is Y1 - 1|

| fac(1—1,Y1),Res is Y1 -1 |

Termination

Given: PROLOG Program, some query template

Question: For all queries matching the template: Does the
inference of the query on the program eventually terminate?

Roadmap

Program
State-based
semantics
.4
/ ©

Termination Graph

YES/NO/
MAYBE

®

f(x) = g(x+1)

g(x) — g(x—1)

Integer Transition
System

From Trees to States

» PROLOG: Tree-based semantics

» Well-known techniques: State-based semantics

Solution: State-based semantics for PROLOG
(Linear Operational Semantics, Stroder et al., 2012)

» Basic Idea: Leaves of tree describe state of inference

» Use front of tree as state

From Trees to States

fac(1, Res)

|1>0,fac(1—1, Y1), Res is Y1 - 1]

1==0,Res is 1

| fac(1—1,Y1),Res is Y1 - 1|

]fac(1— 1,Y1),Res is Y - 1\ | 1=:=0,Res is 1

10

From Trees to States

fac(X, Y) :-
fac(X, Y) :-

X>0, !, fac(X - 1, Y1), Y is Y1 * X.

X =:= 0, Y is 1.\

fac(1, Res)
{

1>0,!, fac(1— 1, Y1), Res is Yl-l\ | | 1==0,Res is 1

11

From Trees to States

, I,fac(1—1,Y1),Resis Y1-1|1==0,Res is 1

1, fac(1-1,Y1),Resis Y1-1||1=:=10, Res is 1

fac(1—1,Y1),Res is Y1 -1

12

Roadmap

Program
State-based
semantics
R
.4
/ ©

Termination Graph

YES/NO/
MAYBE

®

f(x) = g(x+1)

g(x) — g(x—1)

Integer Transition
System

13

From Programs to Graphs

Given: Some Program, some query template

Goal: Finite representation of all possible inferences

Idea: Represent set of runs as graph

14

From Programs To Graphs - Starting State

fac(X, ¥) :-X>0, !, fac(X -1, Y1), Y is Y1 * X.

fac(X, ¥Y) :- X =:=0, Y is 1.

| fac(X1, X2) |

|x1 > 0,1 fac(Xy — 1, Y1), Xa is Y1 - X1 | Xy == 0, %, is 1|

|1 fac(Xa — 1, Y1), X is Y1+ Xa | Xo == 0, % is 1]

| fac(Xa —1,Y1), X% is V1 X |

Xl == O,Xz is 1|

15

From Programs To Graphs - Nonterminating Construction

fac(Xl, X2)

| X >0,1, fac(X — 1, Y1), | Xa == 0, is 1|

v
|!,fac(X1—1,Y1),-~-|X1 ==0,X isll
v

| fac(X1 -]., Y]_), soo |

v

|X1—1>0,!,fac(X1—1—1,Y2),---|X1—1=:=0,...|

v
|!,fac(X1—1—1,Y2),---|X1—1::: | Xi—1==0,...
v

|fac(X1—1—1,Y2),...|

16

From Programs To Graphs - Split rule

fac(Xa —1L,Y1)|, [X is Vi X

et 1.¥)

17

From Programs To Graphs - Split rule

| fac(X1, X2) |

|X1 > 0,1 fac(Xy — 1, Y1), Xa is Y1+ X1 | Xy == 0, X, is 1|

|!, fac(Xy — 1, Y1), Xo is Yy - Xy | Xy == 0, Xz is 1| |x1 ==0,X is 1|

| fac(Xy —1,Y1), Xz is Y1+ Xi |

| fac(Xa —1,11)| | X is Vi X |

[4

18

From Programs To Graphs - Instance Rule

fac(Xl, X2)

§X1I—>X1—1,
;Xz'—>yl

fac(X1 — 17 Yl)

19

From Programs To Graphs - Final Result

fac(Xl, Xg)

| X > 0,1, fac(X — 1, Y1), X is Vi | Xa == 0,% is 1|

|!,fac(X1 —1,Y1), Xa is Y1 X1 | Xo == 0, X%, is 1| |x1 ==0,X is 1|

|fac(X1 —1,Y1), X is Vi .x1|

|fac(X1—1,Y1)| |X2 is Yl'Xll

20

Roadmap

Program
State-based
semantics
R
v
.4
I ®

Termination Graph

YES/NO/
MAYBE

®

f(x) = g(x+1)

g(x) — g(x—1)

Integer Transition
System

21

Integer Transition Systems

Integer Transition System:

f(x) = f(x+1)

| x <0

22

From Graphs to Transition Systems

Given: Some Termination Graph

Goal: Integer Transition System that terminates if all runs
described by the Termination Graph terminate

Idea: Encode graph locally, node by node

23

From Graphs to Transition Systems

Paths in Graph = Evaluations

24

From Graphs to Transition Systems

fac(Xl, X2)

|x1 > 0,1, fac(Xy — 1, Y1), Xo is Yo - Xy | Xo == 0, X is 1|

[T

|Lfac(Xi— 1Y), X is Vi Xa | Xo == 0% is 1| | X1 ==0,% is 1]

| fac(Xy —1,Y1), Xz is Y1 X |

| fac(Xa —1,11)| | X% is Vi X |

25

From Graphs to Transition Systems
A

fac(Xl, X2)

B
|x1 > 0,1, fac(Xy — 1, Y1), Xo is Yy - Xy | X0 == 0, X is 1|

C/ \

|Lfac(Xi—1,Y), % is i - Xa | Xo == 0% is 1| | X1 ==0,X is 1]

D
| fac(Xy —1,Y1), Xz is Y1 X |

E
| fac(Xa —1,11)| | X% is Vi X |

-

From Graphs to Transition Systems

El
1|
Mmoo ®m>
A AN

>moO AN

27

From Graphs to Transition Systems

A
fac(,)

B

>0, fac(X1 —1, V1), X is Y1 - X1 || Xi ==0, X is1

A(XI)X2) — B(X17X2) Yl)

28

From Graphs to Transition Systems

D(X17X2) Yl)
E(X1, Y1)

A(X1, X2)

Ll

B(XlaX27 Yl)
C(X17X27 Yl)
D(X1, X2, Y1)
E(X1, Y1)
A(X1, X2)

A(X1, Y1)

29

From Programs To Graphs - Instance Rule

Xli—)Xl—].,
XQ'—>Y1

fac(X1 — 1, Yl)

30

From Graphs to Transition Systems

D(X].a X27 Yl)
E(X1, Y1)

A(X1, X2)

— B(Xl,XQ, Yl)
— C(Xl,Xz, Yl)
— D(Xl,XQ, Yl)
— E(X1,"1)

— A(X]_ — 1, Yl)
1

— A(X1 — 1, Yl)

31

From Graphs to Transition Systems
A

fac(Xl, X2)

B
|x1 > 0,1, fac(Xy — 1, Y1), Xo is Yo - Xy | Xo == 0, X is 1|

) T

|Lfac(Xi—1,%), X is Vi Xa | Xo == 0% is 1| | X1 ==0,X is 1]

-

D
| fac(Xy —1,Y1), Xz is Y1 X |

E
| fac(Xa —1,11)| | X% is Vi X |

From Graphs to Transition Systems

D(X17X2) Yl)
E(X1, Y1)

2

&

=
RN

B(X17X27 Yl)
C(X17X27 Yl)
D(X1, X2, Y1)
E(X1, Y1)

AXi—1, %)

’X1>0

33

Roadmap

Program
State-based
semantics
R
v
¢
v

Termination Graph

YES/NO/
MAYBE

®

f(x) = g(x+1)

g(x) — g(x—1)

Integer Transition
System

34

Termination of Integer Transition Systems

Well-studied problem

Use known techniques to show termination
(Transition Invariants, Podelski and Rybalchenko, 2004)

35

Roadmap

Program
State-based
semantics
v
v
®
v

Termination Graph

Stopwatch: http://icons8.com/

YES/NO/
MAYBE

®
v
f(x) = g(x+1)

g(x) »g(x—1)

Integer Transition
System

36

http://icons8.com/

Results - Compared Approaches

Term Rewriting with Argument Filter Directly from Program
(Termination Proofs, Schneider-Kamp et al., 2009)

Dependency Triples Graph Construction
(Dependency Triples, Stroder et al., 2011)

Term Rewriting Graph Construction
(Symbolic Evaluation Graphs, Giesl et al., 2012)

Integer Transition Systems | This approach

(Analysis of Arithmetic Prolog Programs, Weinert, 2015)

Two-Step Constraint Satisfaction Problem
(Non-termination Analysis, Voets et al., 2011)

37

Results - Logic Benchmarks - Power

YES mmmmm MAYBE mmmmm NO mmmm
T

500 T

300

200 —

Number of examples

100

Term Rewriting Dependency Term Integer Transition Two-Step
w/ Argument Filter Triples Rewriting System

Results - Logic Benchmarks - Runtime

Runtime [s]

YES + MAYBE + NO
+ * i * it
100 ok ” x § t
1 ks + * il
+ + i
E: ! + I :
+ % + ; +
+ + § ES +
10 [y £t o - % wont
g : ; i
1 3 7 %
Eo+
Pt
=
0.1 I I I I
Term Rewriting Dependency Term Integer Transition Two-Step
w/ Argument Filter Triples Rewriting System

39

Results - Numerical Benchmarks - Power

YES mmmmm MAYBE mmmmm NO mmmm
T

140

120

80 —

60 —

Number of examples

20 —

Term Rewriting Dependency Term Integer Transition Two-Step
w/ Argument Filter Triples Rewriting System

Results - Numerical Benchmarks - Runtime

Runtime [s]

100

10 |

0.1

YES + MAYBE + NO
L E * : * J
E % + 1
[* i
[+
R . .
. : : £ |
Pt t T . £ 0
[+ 4
r % + + b § k
e I i
: 1 : £

= E

+ + + +

I I I I I
Term Rewriting Dependency Term Integer Transition Two-Step
w/ Argument Filter Triples Rewriting System

41

Contributions - Theoretical

» Extended construction of Termination Graphs, taking
arithmetic comparisons and evaluations into account

» Developed new construction of Integer Transition System
from Termination Graphs

» Extended abstract state to store arithmetic knowledge
> Separated abstract semantics and termination analysis

» Proved soundness of all steps of the construction

42

Contributions - Practical

» Implemented extension of construction of Termination Graphs,
optimization through SMT solver

» Implemented construction of Integer Transition Systems from
Termination Graphs

» Added 162 numerical benchmarks to benchmark suite

» Performed experiments comparing this approach to existing
ones

43

Program

http://alexanderweinert.net/talks
alexander.weinert@rwth-aachen.de

State-based
semantics

Stopwatch: http://icons8.com/

YES/NO/
MAYBE

44

http://alexanderweinert.net/talks
mailto:alexander.weinert@rwth-aachen.de
alexander.weinert@rwth-aachen.de
http://icons8.com/

