
1

Analysis of Arithmetic Prolog Programs using
Abstract Interpretation

Alexander Weinert

Master Thesis Presentation

June 22, 2015

2

Roadmap

Program YES/NO/
MAYBE

Question: Do all evaluations of the program terminate?

2

Roadmap

Program YES/NO/
MAYBE

Question: Do all evaluations of the program terminate?

2

Roadmap

Program YES/NO/
MAYBE

Question: Do all evaluations of the program terminate?

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :-

X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0,

fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1),

Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :-

X =:= 0, Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0,

Y is 1.

3

Prolog - Introduction

fac(X) =

if X > 0 then Y1 = fac(X-1), return Y1 * X

if X == 0 then return 1

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 =:= 0,Res is 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 1

1 =:= 0,Res is 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

�

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

�

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

� Y1 is 1,Res is Y1 · 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

� Y1 is 1,Res is Y1 · 1

Res is 1 · 1

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

� Y1 is 1,Res is Y1 · 1

Res is 1 · 1

ε

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

� Y1 is 1,Res is Y1 · 1

Res is 1 · 1

ε

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

� Y1 is 1,Res is Y1 · 1

Res is 1 · 1

ε

�

4

Prolog - Evaluation
fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 11 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

1− 1 > 0, fac(1− 1− 1,Y2),
Y2 is Y1 · (1− 1),Res is Y1 · 1

1− 1 =:= 0,Y1 is 1,Res is Y1 · 1

� Y1 is 1,Res is Y1 · 1

Res is 1 · 1

ε

�

5

Prolog - Cut

fac(X, Y) :- X > 0,

!,

fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

5

Prolog - Cut

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

6

Prolog - Cut

fac(1,Res)

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

!, fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y1),Res is Y1 · 1

.

6

Prolog - Cut

fac(1,Res)

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

!, fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y1),Res is Y1 · 1

.

6

Prolog - Cut

fac(1,Res)

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

!, fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y1),Res is Y1 · 1

.

6

Prolog - Cut

fac(1,Res)

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

!, fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y1),Res is Y1 · 1

.

6

Prolog - Cut

fac(1,Res)

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

!, fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y1),Res is Y1 · 1

.

7

Termination

Given: Prolog Program, some query template

Question:

For all queries matching the template: Does the
inference of the query on the program eventually terminate?

7

Termination

Given: Prolog Program, some query template

Question: For all queries matching the template:

Does the
inference of the query on the program eventually terminate?

7

Termination

Given: Prolog Program, some query template

Question: For all queries matching the template: Does the
inference of the query on the program eventually terminate?

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

8

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

9

From Trees to States

I Prolog: Tree-based semantics

I Well-known techniques: State-based semantics

Solution: State-based semantics for Prolog
(Linear Operational Semantics, Ströder et al., 2012)

I Basic Idea: Leaves of tree describe state of inference

I Use front of tree as state

9

From Trees to States

I Prolog: Tree-based semantics

I Well-known techniques: State-based semantics

Solution: State-based semantics for Prolog
(Linear Operational Semantics, Ströder et al., 2012)

I Basic Idea: Leaves of tree describe state of inference

I Use front of tree as state

9

From Trees to States

I Prolog: Tree-based semantics

I Well-known techniques: State-based semantics

Solution: State-based semantics for Prolog
(Linear Operational Semantics, Ströder et al., 2012)

I Basic Idea: Leaves of tree describe state of inference

I Use front of tree as state

10

From Trees to States

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y 1),Res is Y1 · 1 | 1 =:= 0,Res is 1

10

From Trees to States

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y 1),Res is Y1 · 1

| 1 =:= 0,Res is 1

10

From Trees to States

fac(1,Res)

1 > 0, fac(1− 1,Y1),Res is Y1 · 1 1 =:= 0,Res is 1

fac(1− 1,Y1),Res is Y1 · 1

fac(1− 1,Y 1),Res is Y1 · 1 | 1 =:= 0,Res is 1

11

From Trees to States

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

↓

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 |

1 =:= 0,Res is 1

11

From Trees to States

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

↓

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 |

1 =:= 0,Res is 1

11

From Trees to States

fac(X, Y) :- X > 0, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(1,Res)

↓

1 > 0, !, fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0,Res is 1

12

From Trees to States

1 > 0 , !, fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0,Res is 1

↓

! , fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0, Res is 1

↓

fac(1− 1,Y1),Res is Y1 · 1

12

From Trees to States

1 > 0 , !, fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0,Res is 1

↓

! , fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0, Res is 1

↓

fac(1− 1,Y1),Res is Y1 · 1

12

From Trees to States

1 > 0 , !, fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0,Res is 1

↓

! , fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0, Res is 1

↓

fac(1− 1,Y1),Res is Y1 · 1

12

From Trees to States

1 > 0 , !, fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0,Res is 1

↓

! , fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0, Res is 1

↓

fac(1− 1,Y1),Res is Y1 · 1

12

From Trees to States

1 > 0 , !, fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0,Res is 1

↓

! , fac(1− 1,Y1),Res is Y1 · 1 | 1 =:= 0, Res is 1

↓

fac(1− 1,Y1),Res is Y1 · 1

13

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

1

2

3

4

13

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

2

3

4

14

From Programs to Graphs

Given: Some Program, some query template

Goal: Finite representation of all possible inferences

Idea: Represent set of runs as graph

14

From Programs to Graphs

Given: Some Program, some query template

Goal: Finite representation of all possible inferences

Idea: Represent set of runs as graph

15

From Programs To Graphs - Starting State

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(X1,X2)

X1 > 0, , !fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1),X2 is Y1 · X1

15

From Programs To Graphs - Starting State

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1),X2 is Y1 · X1

15

From Programs To Graphs - Starting State

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

X1 =:= 0,X2 is 1

fac(X1 − 1,Y1),X2 is Y1 · X1

15

From Programs To Graphs - Starting State

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(X1,X2)

X1 > 0, , !fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1),X2 is Y1 · X1

15

From Programs To Graphs - Starting State

fac(X, Y) :- X > 0, !, fac(X - 1, Y1), Y is Y1 * X.

fac(X, Y) :- X =:= 0, Y is 1.

fac(X1,X2)

X1 > 0, , !fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1),X2 is Y1 · X1

16

From Programs To Graphs - Nonterminating Construction

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1), . . .

X1 − 1 > 0, !, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . .

!, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . . X1 − 1 =:= 0, . . .

fac(X1 − 1− 1,Y2), . . .

16

From Programs To Graphs - Nonterminating Construction

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1), . . .

X1 − 1 > 0, !, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . .

!, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . . X1 − 1 =:= 0, . . .

fac(X1 − 1− 1,Y2), . . .

16

From Programs To Graphs - Nonterminating Construction

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1), . . .

X1 − 1 > 0, !, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . .

!, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . . X1 − 1 =:= 0, . . .

fac(X1 − 1− 1,Y2), . . .

16

From Programs To Graphs - Nonterminating Construction

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1), . . .

X1 − 1 > 0, !, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . .

!, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . . X1 − 1 =:= 0, . . .

fac(X1 − 1− 1,Y2), . . .

16

From Programs To Graphs - Nonterminating Construction

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1), · · · | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

fac(X1 − 1,Y1), . . .

X1 − 1 > 0, !, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . .

!, fac(X1 − 1− 1,Y2), · · · | X1 − 1 =:= 0, . . . X1 − 1 =:= 0, . . .

fac(X1 − 1− 1,Y2), . . .

17

From Programs To Graphs - Split rule

fac(X1 − 1,Y1) , X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

17

From Programs To Graphs - Split rule

fac(X1 − 1,Y1) , X2 is Y1 · X1

fac(X1 − 1,Y1)

X2 is Y1 · X1

17

From Programs To Graphs - Split rule

fac(X1 − 1,Y1) , X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

17

From Programs To Graphs - Split rule

fac(X1 − 1,Y1) , X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

18

From Programs To Graphs - Split rule

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

18

From Programs To Graphs - Split rule

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

18

From Programs To Graphs - Split rule

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

18

From Programs To Graphs - Split rule

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

18

From Programs To Graphs - Split rule

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

19

From Programs To Graphs - Instance Rule

fac(X1,X2)

fac(X1 − 1,Y1)

X1 7→ X1 − 1,
X2 7→ Y1

19

From Programs To Graphs - Instance Rule

fac(X1,X2)

fac(X1 − 1,Y1)

X1 7→ X1 − 1,
X2 7→ Y1

19

From Programs To Graphs - Instance Rule

fac(X1,X2)

fac(X1 − 1,Y1)

X1 7→ X1 − 1,
X2 7→ Y1

20

From Programs To Graphs - Final Result

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

20

From Programs To Graphs - Final Result

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

21

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

2

3

4

21

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

X

3

4

22

Integer Transition Systems

Integer Transition System:

f (x)→ f (x + 1)

| x < 0

22

Integer Transition Systems

Integer Transition System:

f (x)→ f (x + 1) | x < 0

23

From Graphs to Transition Systems

Given: Some Termination Graph

Goal: Integer Transition System that terminates if

all runs
described by the Termination Graph terminate

Idea: Encode graph locally, node by node

23

From Graphs to Transition Systems

Given: Some Termination Graph

Goal: Integer Transition System that terminates if all runs
described by the Termination Graph terminate

Idea: Encode graph locally, node by node

23

From Graphs to Transition Systems

Given: Some Termination Graph

Goal: Integer Transition System that terminates if all runs
described by the Termination Graph terminate

Idea: Encode graph locally, node by node

24

From Graphs to Transition Systems

Paths in Graph ≈ Evaluations

25

From Graphs to Transition Systems

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

25

From Graphs to Transition Systems

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

25

From Graphs to Transition Systems

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

25

From Graphs to Transition Systems

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

25

From Graphs to Transition Systems

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

25

From Graphs to Transition Systems

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

25

From Graphs to Transition Systems

fac(X1,X2)

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1 X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

fac(X1 − 1,Y1) X2 is Y1 · X1

ε

26

From Graphs to Transition Systems

fac(X1,X2)

A

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

B

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

C

X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

D

fac(X1 − 1,Y1)

E

X2 is Y1 · X1

ε

27

From Graphs to Transition Systems

A

B

C

D

E

A → B
B → C
C → D
D → E
E → A

↓

A → A

27

From Graphs to Transition Systems

A

B

C

D

E

A → B
B → C
C → D
D → E
E → A

↓

A → A

27

From Graphs to Transition Systems

A

B

C

D

E

A → B
B → C
C → D
D → E
E → A

↓

A → A

28

From Graphs to Transition Systems

fac(X1 , X2)

A

X1 > 0, !, fac(X1 − 1, Y1), X2 is Y1 · X1 | X1 =:= 0, X2 is 1

B

A(

X1,X2

) → B(

X1,X2,Y1

)

28

From Graphs to Transition Systems

fac(X1 , X2)

A

X1 > 0, !, fac(X1 − 1, Y1), X2 is Y1 · X1 | X1 =:= 0, X2 is 1

B

A(

X1,X2

) → B(

X1,X2,Y1

)

28

From Graphs to Transition Systems

fac(X1 , X2)

A

X1 > 0, !, fac(X1 − 1, Y1), X2 is Y1 · X1 | X1 =:= 0, X2 is 1

B

A(

X1,X2

) → B(

X1,X2,Y1

)

28

From Graphs to Transition Systems

fac(X1 , X2)

A

X1 > 0, !, fac(X1 − 1, Y1), X2 is Y1 · X1 | X1 =:= 0, X2 is 1

B

A(X1,X2) → B(X1,X2,Y1)

29

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1,X2)

↓

A(X1,X2) → A(X1,Y1)

29

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1,X2)

↓

A(X1,X2) → A(X1,Y1)

29

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1,X2)

↓

A(X1,X2) → A(X1,Y1)

30

From Programs To Graphs - Instance Rule

fac(X1,X2)

fac(X1 − 1,Y1)

X1 7→ X1 − 1,
X2 7→ Y1

A

E

31

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)X1 7→ X1 − 1,
X2 7→ Y1

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(

X1 − 1,Y1

)

↓

A(X1,X2) → A(X1 − 1,Y1)

31

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)X1 7→ X1 − 1,
X2 7→ Y1

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1 − 1,Y1)

↓

A(X1,X2) → A(X1 − 1,Y1)

31

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)X1 7→ X1 − 1,
X2 7→ Y1

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1 − 1,Y1)

↓

A(X1,X2) → A(X1 − 1,Y1)

32

From Graphs to Transition Systems

fac(X1,X2)

A

X1 > 0, !, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

B

!, fac(X1 − 1,Y1),X2 is Y1 · X1 | X1 =:= 0,X2 is 1

C

X1 =:= 0,X2 is 1

X2 is 1 ε

ε

fac(X1 − 1,Y1),X2 is Y1 · X1

D

fac(X1 − 1,Y1)

E

X2 is Y1 · X1

ε

33

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)X1 7→ X1 − 1,
X2 7→ Y1

X1 > 0

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)

| X1 > 0

C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1 − 1,Y1)

↓

A(X) → A(X − 1) | X > 0

33

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)X1 7→ X1 − 1,
X2 7→ Y1

X1 > 0

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1)

| X1 > 0

C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1 − 1,Y1)

↓

A(X) → A(X − 1) | X > 0

33

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)X1 7→ X1 − 1,
X2 7→ Y1

X1 > 0

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1) | X1 > 0
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1 − 1,Y1)

↓

A(X) → A(X − 1) | X > 0

33

From Graphs to Transition Systems

A(X1,X2)

B(X1,X2,Y1)

C (X1,X2,Y1)

D(X1,X2,Y1)

E (X1,Y1)X1 7→ X1 − 1,
X2 7→ Y1

X1 > 0

A(X1,X2) → B(X1,X2,Y1)
B(X1,X2,Y1) → C (X1,X2,Y1) | X1 > 0
C (X1,X2,Y1) → D(X1,X2,Y1)
D(X1,X2,Y1) → E (X1,Y1)
E (X1,Y1) → A(X1 − 1,Y1)

↓

A(X) → A(X − 1) | X > 0

34

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

X

3

4

34

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

X

X

4

35

Termination of Integer Transition Systems

Well-studied problem

Use known techniques to show termination
(Transition Invariants, Podelski and Rybalchenko, 2004)

35

Termination of Integer Transition Systems

Well-studied problem

Use known techniques to show termination
(Transition Invariants, Podelski and Rybalchenko, 2004)

36

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

X

X

4

Stopwatch: http://icons8.com/

http://icons8.com/

36

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

X

X

X

Stopwatch: http://icons8.com/

http://icons8.com/

36

Roadmap

Program YES/NO/
MAYBE

Termination Graph

State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

Integer Transition
System

X

X

X

X

Stopwatch: http://icons8.com/

http://icons8.com/

37

Results - Compared Approaches

Term Rewriting with Argument Filter Directly from Program

(Termination Proofs, Schneider-Kamp et al., 2009)

Dependency Triples Graph Construction

(Dependency Triples, Ströder et al., 2011)

Term Rewriting Graph Construction

(Symbolic Evaluation Graphs, Giesl et al., 2012)

Integer Transition Systems This approach

(Analysis of Arithmetic Prolog Programs, Weinert, 2015)

Two-Step Constraint Satisfaction Problem

(Non-termination Analysis, Voets et al., 2011)

37

Results - Compared Approaches

Term Rewriting with Argument Filter Directly from Program

(Termination Proofs, Schneider-Kamp et al., 2009)

Dependency Triples Graph Construction

(Dependency Triples, Ströder et al., 2011)

Term Rewriting Graph Construction

(Symbolic Evaluation Graphs, Giesl et al., 2012)

Integer Transition Systems This approach

(Analysis of Arithmetic Prolog Programs, Weinert, 2015)

Two-Step Constraint Satisfaction Problem

(Non-termination Analysis, Voets et al., 2011)

37

Results - Compared Approaches

Term Rewriting with Argument Filter Directly from Program

(Termination Proofs, Schneider-Kamp et al., 2009)

Dependency Triples Graph Construction

(Dependency Triples, Ströder et al., 2011)

Term Rewriting Graph Construction

(Symbolic Evaluation Graphs, Giesl et al., 2012)

Integer Transition Systems This approach

(Analysis of Arithmetic Prolog Programs, Weinert, 2015)

Two-Step Constraint Satisfaction Problem

(Non-termination Analysis, Voets et al., 2011)

37

Results - Compared Approaches

Term Rewriting with Argument Filter Directly from Program

(Termination Proofs, Schneider-Kamp et al., 2009)

Dependency Triples Graph Construction

(Dependency Triples, Ströder et al., 2011)

Term Rewriting Graph Construction

(Symbolic Evaluation Graphs, Giesl et al., 2012)

Integer Transition Systems This approach

(Analysis of Arithmetic Prolog Programs, Weinert, 2015)

Two-Step Constraint Satisfaction Problem

(Non-termination Analysis, Voets et al., 2011)

37

Results - Compared Approaches

Term Rewriting with Argument Filter Directly from Program

(Termination Proofs, Schneider-Kamp et al., 2009)

Dependency Triples Graph Construction

(Dependency Triples, Ströder et al., 2011)

Term Rewriting Graph Construction

(Symbolic Evaluation Graphs, Giesl et al., 2012)

Integer Transition Systems This approach

(Analysis of Arithmetic Prolog Programs, Weinert, 2015)

Two-Step Constraint Satisfaction Problem

(Non-termination Analysis, Voets et al., 2011)

38

Results - Logic Benchmarks - Power

 0

 100

 200

 300

 400

 500

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s

YES MAYBE NO

38

Results - Logic Benchmarks - Power

 0

 100

 200

 300

 400

 500

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s

YES MAYBE NO

39

Results - Logic Benchmarks - Runtime

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

R
u
n
ti

m
e
 [

s]

YES MAYBE NO

39

Results - Logic Benchmarks - Runtime

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

R
u
n
ti

m
e
 [

s]

YES MAYBE NO

40

Results - Numerical Benchmarks - Power

 0

 20

 40

 60

 80

 100

 120

 140

 160

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s

YES MAYBE NO

40

Results - Numerical Benchmarks - Power

 0

 20

 40

 60

 80

 100

 120

 140

 160

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s

YES MAYBE NO

41

Results - Numerical Benchmarks - Runtime

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

R
u
n
ti

m
e
 [

s]

YES MAYBE NO

41

Results - Numerical Benchmarks - Runtime

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

R
u
n
ti

m
e
 [

s]

YES MAYBE NO

42

Contributions - Theoretical

I Extended construction of Termination Graphs, taking
arithmetic comparisons and evaluations into account

I Developed new construction of Integer Transition System
from Termination Graphs

I Extended abstract state to store arithmetic knowledge

I Separated abstract semantics and termination analysis

I Proved soundness of all steps of the construction

42

Contributions - Theoretical

I Extended construction of Termination Graphs, taking
arithmetic comparisons and evaluations into account

I Developed new construction of Integer Transition System
from Termination Graphs

I Extended abstract state to store arithmetic knowledge

I Separated abstract semantics and termination analysis

I Proved soundness of all steps of the construction

42

Contributions - Theoretical

I Extended construction of Termination Graphs, taking
arithmetic comparisons and evaluations into account

I Developed new construction of Integer Transition System
from Termination Graphs

I Extended abstract state to store arithmetic knowledge

I Separated abstract semantics and termination analysis

I Proved soundness of all steps of the construction

42

Contributions - Theoretical

I Extended construction of Termination Graphs, taking
arithmetic comparisons and evaluations into account

I Developed new construction of Integer Transition System
from Termination Graphs

I Extended abstract state to store arithmetic knowledge

I Separated abstract semantics and termination analysis

I Proved soundness of all steps of the construction

43

Contributions - Practical

I Implemented extension of construction of Termination Graphs,
optimization through SMT solver

I Implemented construction of Integer Transition Systems from
Termination Graphs

I Added 162 numerical benchmarks to benchmark suite

I Performed experiments comparing this approach to existing
ones

43

Contributions - Practical

I Implemented extension of construction of Termination Graphs,
optimization through SMT solver

I Implemented construction of Integer Transition Systems from
Termination Graphs

I Added 162 numerical benchmarks to benchmark suite

I Performed experiments comparing this approach to existing
ones

44

http://alexanderweinert.net/talks

alexander.weinert@rwth-aachen.de

Program
State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

YES/NO/
MAYBE

Stopwatch: http://icons8.com/

http://alexanderweinert.net/talks
mailto:alexander.weinert@rwth-aachen.de
alexander.weinert@rwth-aachen.de
http://icons8.com/

