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Integer Transition Systems

Integer Transition System:

f (x)→ f (x + 1)

| x < 0
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From Graphs to Transition Systems

Given: Some Termination Graph

Goal: Integer Transition System that terminates if

all runs
described by the Termination Graph terminate

Idea: Encode graph locally, node by node
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From Graphs to Transition Systems

Paths in Graph ≈ Evaluations
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From Programs To Graphs - Instance Rule

fac(X1,X2)

fac(X1 − 1,Y1)

X1 7→ X1 − 1,
X2 7→ Y1

A

E
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Termination of Integer Transition Systems

Well-studied problem

Use known techniques to show termination
(Transition Invariants, Podelski and Rybalchenko, 2004)
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Term Rewriting Graph Construction

(Symbolic Evaluation Graphs, Giesl et al., 2012)

Integer Transition Systems This approach

(Analysis of Arithmetic Prolog Programs, Weinert, 2015)

Two-Step Constraint Satisfaction Problem

(Non-termination Analysis, Voets et al., 2011)



38

Results - Logic Benchmarks - Power

 0

 100

 200

 300

 400

 500

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r 

o
f 

e
x
a
m

p
le

s

YES MAYBE NO



38

Results - Logic Benchmarks - Power

 0

 100

 200

 300

 400

 500

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r 

o
f 

e
x
a
m

p
le

s

YES MAYBE NO



39

Results - Logic Benchmarks - Runtime

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

R
u
n
ti

m
e
 [

s]

YES MAYBE NO



39

Results - Logic Benchmarks - Runtime

 0.1

 1

 10

 100

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

R
u
n
ti

m
e
 [

s]

YES MAYBE NO



40

Results - Numerical Benchmarks - Power

 0

 20

 40

 60

 80

 100

 120

 140

 160

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r 

o
f 

e
x
a
m

p
le

s

YES MAYBE NO



40

Results - Numerical Benchmarks - Power

 0

 20

 40

 60

 80

 100

 120

 140

 160

Term Rewriting
w/ Argument Filter

Dependency
Triples

Term
Rewriting

Integer Transition
System

Two-Step

N
u
m

b
e
r 

o
f 

e
x
a
m

p
le

s

YES MAYBE NO



41

Results - Numerical Benchmarks - Runtime
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Results - Numerical Benchmarks - Runtime
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Contributions - Theoretical

I Extended construction of Termination Graphs, taking
arithmetic comparisons and evaluations into account

I Developed new construction of Integer Transition System
from Termination Graphs

I Extended abstract state to store arithmetic knowledge

I Separated abstract semantics and termination analysis

I Proved soundness of all steps of the construction
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Contributions - Practical

I Implemented extension of construction of Termination Graphs,
optimization through SMT solver

I Implemented construction of Integer Transition Systems from
Termination Graphs

I Added 162 numerical benchmarks to benchmark suite

I Performed experiments comparing this approach to existing
ones
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http://alexanderweinert.net/talks

alexander.weinert@rwth-aachen.de

Program
State-based
semantics

f (x)→ g(x + 1)
g(x)→ g(x − 1)

YES/NO/
MAYBE
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